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•  Current	
  ν	
  data	
  (solar,	
  atmospheric,	
  reactor,	
  long-­‐baseline)	
  indicate	
  :	
  
² One	
  small	
  angle	
  (θ13),	
  two	
  large	
  angles	
  (θ12,θ23)	
  
² Two	
  dis/nct	
  mass-­‐squared	
  differences	
  (δm2

21	
  <<	
  |δm2
31|)	
  

•  In	
  a	
  3-­‐ν	
  scenario,	
  a	
  global	
  fit	
  to	
  PMNS	
  matrix	
  gives	
  

	
  
•  Currently	
  unknown	
  

² Sign	
  of	
  Δm2	
  (NO	
  or	
  IO)	
  
² CP	
  phases	
  (Dirac	
  phase	
  δ	
  and	
  Majorana	
  phases	
  φ2,	
  φ3)	
  
² Absolute	
  masses	
  (parametrized	
  as	
  the	
  lightest	
  mass,	
  m1	
  for	
  NO	
  and	
  m3	
  for	
  IO)	
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Normal	
  ordering	
  (NO)	
   Inverted	
  ordering	
  (IO)	
  

Gonzalez-­‐Garcia	
  et	
  al.	
  



•  Tri-­‐bimaximal	
  (TBM)	
  mixing	
  gives	
  θ23	
  =	
  45o,	
  θ12	
  ≈	
  35o,	
  but	
  θ13	
  =	
  0	
  

•  Use	
  perturba/ons	
  to	
  bring	
  models	
  in	
  agreement	
  with	
  data	
  
² Renormaliza/on	
  group	
  correc/ons	
  
² Radia/ve	
  correc/ons	
  
² Vacuum	
  misalignment	
  correc/ons	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  QUESTIONS	
  
•  What	
  models	
  can	
  give	
  experimentally	
  acceptable	
  results	
  	
  arer	
  

perturba/ons?	
  

•  How	
  are	
  the	
  CP	
  viola/ng	
  phases	
  affected	
  by	
  perturba/ons?	
  



Perturba/on	
  formalism	
  (charged	
  lepton	
  basis)	
  

Original	
  
mass	
  
matrix	
  

Perturba/on	
   Diagonalizes	
  
M0	
  

unperturbed	
  
masses	
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  mixing	
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  masses	
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Real	
  Perturba/ons	
  (Real	
  Mass	
  Matrix)	
  
•  Assume	
  εij,	
  δm0

21	
  <<	
  |δm0
31|;	
  then	
  to	
  leading	
  order	
  

•  where	
  

•  and	
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(minus) sign is for i = 1 (2). The final mass matrix is diagonalized by the following mixing

matrix
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By comparing it to the standard parametrization, we find the LO corrections to the three

mixing angles to be
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where we have ignored the next-to-leading-order correction to θ12, which is O(|ϵij|/|δm0
31|).

For θ013 = 0 and θ023 = π/4, it is easy to verify that the corrections in Eq. (14) yield the results

of Ref. [7] for the LO corrections,1 which were obtained using degenerate perturbation theory.

As noted in Ref. [7], the near degeneracy of m1 and m2 (|δm0
21| ≪ |δm0

31|) implies that δθ12

can be large for small perturbations (|ϵij| ≪ |δm0
31|).

2.2 Complex case

For the complex case, the most general form for U0 is
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0
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1Also, for the next-to-leading-order correction to θ12, we obtain Eq. (14) of Ref. [7], except that δm0
21 in

the denominator should be replaced by δm
(1)
21 ≡ (m0

2 + δm2)− (m0
1 + δm1).
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  =	
  0	
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  (θ12	
  ≈	
  35.3o)	
  	
  
²  	
  Bimaximal	
  (θ12	
  =	
  450)	
  
²  	
  Hexagonal	
  (θ12	
  =	
  30o)	
  
²  	
  Golden	
  ra/o	
  (A5,	
  θ12	
  ≈	
  31.7o)	
  	
  

b)  θ23	
  =	
  45o,	
  θ12	
  =	
  0	
  	
  
c)  θ23	
  =	
  45o,	
  θ12	
  =	
  900	
  	
  
d)  θ23	
  =	
  45o,	
  δ	
  =	
  ±	
  900	
  

²  Tetramaximal	
  (θ12	
  ≈	
  30.3o,	
  θ13	
  ≈	
  8.3o)	
  

•  Bimaximal,	
  Hexagonal,	
  or	
  even	
  models	
  on	
  the	
  “dark	
  side”	
  	
  
	
  	
  	
  	
  	
  	
  (θ12	
  >	
  45o)	
  are	
  now	
  possible!	
  

Of the numerous neutrino mixing scenarios discussed in the literature [1], several have
µ − τ symmetry, such as tri-bimaximal mixing (TBM) [2], bimaximal mixing (BM) [3],
hexagonal mixing (HM) [4] and scenarios of A5 mixing [5]. In these scenarios, θ23 = 45◦,
θ13 = 0, and only θ12 depends on the particular model. Tri-bimaximal mixing is most
popular because the value of θ12 predicted by TBM is close to that preferred by the
current experimental data. However, the latest results from the T2K [6], MINOS [7],
and Double Chooz [8] experiments suggest a nonzero value of θ13, and the recent Daya
Bay [9] and RENO [10] experiments find θ13 ̸= 0 at the 5.2σ and 4.9σ level, respectively.
Various corrections may reconcile such models with nonzero θ13 [1]. In this Letter we
consider small perturbations acting on Majorana mass matrices with µ − τ symmetry
and estimate the size of perturbations required to explain the experimental data.

We find that for µ − τ symmetries with almost any initial value of θ12 (i.e., before
the perturbation), the minimal size of the perturbations needed to bring the model in
agreement with experimental data varies by only about 20%. The reason is that the θ12
correction depends only on the ratio of perturbation terms and not on their absolute
size, and the overall size of the perturbation is determined by the corrections to θ13 and
θ23, which are relatively small. We also show that a new category of models with µ − τ
symmetry, θ23 = 45◦, θ12 = 0 or 90◦, and arbitrary θ13, can also fit the data with small
perturbations.

We start with the mass matrix for Majorana neutrinos

M = U∗MdiagU † , (1)

where Mdiag = diag(m1, m2, m3), U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix [11] (without the multiplicative diagonal matrix of Majorana phases), and
we work in the basis in which the charged lepton mass matrix is diagonal. The masses
m2 and m3 are complex and m1 can be taken to be real and non-negative.

The general condition describing µ − τ symmetry (also sometimes called µ − τ uni-
versality) is [12]

|Uµi| = |Uτ i| , for i = 1, 2, 3. (2)

From the standard form of the mixing matrix these conditions are equivalent to

θ23 = 45◦ , Re(cos θ12 sin θ12 sin θ13e
iδ) = 0 . (3)

Hence, there are four classes of µ − τ symmetry: (a) θ23 = 45◦, θ13 = 0; (b) θ23 =
45◦, θ12 = 0; (c) θ23 = 45◦, θ12 = 90◦; (d) θ23 = 45◦, δ = ±90◦. Class (a) contains models
with tri-bimaximal, bimaximal, hexagonal, and A5 symmetries, while class (d) includes
tetramaximal symmetry [13]. Classes (b) and (c) have not been studied before because
the unperturbed θ12 angle is far from the experimentally preferred value, but, as we show
below, small perturbations can have a large effect on θ12, and therefore these models
should not be ignored.
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  order	
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Table 1: Best-fit values and 2σ ranges of the oscillation parameters [14] used to find the
ϵij , with δm2 ≡ |m2|2 −m2

1 and ∆m2 ≡ |m3|2 − (m2
1 + |m2|2)/2.

Hierarchy θ12(◦) θ13(◦) θ23(◦) δm2(10−5eV2) |∆m2|(10−3eV2)
Normal 33.6+2.1

−2.0 8.9+0.9
−0.9 38.4+3.6

−2.3 7.54+0.46
−0.39 2.43+0.12

−0.16

Inverted 33.6+2.1
−2.0 9.0+0.8

−1.0 38.8+5.3
−2.3 ⊕ 47.5− 53.2 7.54+0.46

−0.39 2.42+0.11
−0.16

The first order corrections to the mixing angles are

δθ(1)12 =
1

2
arctan

2
√
2ϵ3 cos 2θ012 − ϵ6 sin 2θ012

2
√
2ϵ3 sin 2θ012 + ϵ6 cos 2θ012 + 2δm0

21

, (11)

δθ(1)23 =
ϵ5s212 −

√
2ϵ2s12c12

2δm0
31

+
ϵ5c212 +

√
2ϵ2s12c12

2δm0
32

, (12)

δθ(1)13 =

√
2ϵ2c212 − ϵ5s12c12

2δm0
31

+

√
2ϵ2s212 + ϵ5s12c12

2δm0
32

, (13)

and the second order correction to θ12 is

δθ(2)12 = −
√
2ϵ2ϵ5 cos 2(θ012 + δθ(1)12 ) + (ϵ22 − ϵ25/2) sin 2(θ

0
12 + δθ(1)12 )

4δm0
21δm

0
32

. (14)

Imposing |δm0
21| ≪ |δm0

31|, the expressions for δθ(1)23 and δθ(1)13 simplify to

δθ(1)23 ≃
ϵ5

2δm0
31

, δθ(1)13 ≃
√
2ϵ2

2δm0
31

. (15)

We note that while δθ(1)23 and δθ(1)13 are suppressed by a factor of order ϵj/δm0
31, to leading

order δθ12 depends only on ratios of linear combinations of ϵ3, ϵ6 and δm0
21 (which is

O(ϵij)). Therefore large corrections to θ12 are possible even for small corrections to θ23
and θ13.

A recent global three-neutrino fit [14] yields the parameter values in Table 1. We
have done a numerical search to find perturbed mass matrices that give the oscillation
parameters and which have small perturbations. In our search, we first fix θ023 = 45◦ and
θ013 = 0, consistent with µ − τ symmetry, and choose a particular value for θ012 and the
magnitude of m1 for the normal hierarchy (or m3 for the inverted hierarchy). The global
fit in Table 1 then defines the magnitudes of the other two final masses and the three
final mixing angles (since θ013 = 0, the initial Dirac phase does not matter).

We characterize the size of the perturbation as the root-mean-square (RMS) value of
the perturbations, i.e.,

ϵRMS =

√

∑3
i,j=1 |Mij −M0ij |2

9
, (16)
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Table 2: Top half: values of the perturbations (in 10−3 eV) that give the best-fit param-
eters in Table 1 and have the minimum ϵRMS for the given θ012, for the normal hierarchy
and m1 = 0. Bottom half: representative values that fit the experimental data within
2σ and for which all ϵij have a similar magnitude (with m0

1 = 0, m0
2 = 0.0054 eV,

m0
3 = 0.0595 eV, m1 = 0.0072 eV, δ = 180◦ and all other phases equal to 0).

θ012(
◦) ϵ11 ϵ12 ϵ13 ϵ22 ϵ23 ϵ33 ϵRMS

60 -3.05 -3.50 -5.99 -2.72 -1.52 5.77 4.10
45 (BM) -1.32 -4.74 -4.74 -3.58 -0.66 4.90 3.79
35.3 (TBM) 0.32 -4.66 -4.82 -4.40 0.16 4.08 3.74
30 (HM) 1.07 -4.31 -5.18 -4.78 0.54 3.71 3.79
0 0.00 -1.38 -8.11 -4.24 0.00 4.24 4.36

60 5.41 -4.17 -4.52 -5.00 -9.94 3.36 6.14
45 (BM) 6.76 -4.43 -4.26 -5.67 -9.27 2.69 6.08
35.3 (TBM) 7.66 -4.32 -4.37 -6.12 -8.82 2.24 6.08
30 (HM) 8.11 -4.17 -4.52 -6.35 -8.59 2.01 6.09
0 9.46 -2.52 -6.17 -7.02 -7.92 1.34 6.28

where i and j sum over neutrino flavors. Hence, ϵRMS is determined by the following
quantities: three initial masses, two initial Majorana phases, two final Majorana phases
and one final Dirac phase. We scan over these quantities with all phases taken to be
either 0 or 180◦ to find the minimum value of ϵRMS for a given θ012. We follow the same
procedure for classes (b) and (c) below. For class (d), all values of the phases are allowed.

We show the perturbations that give the smallest ϵRMS for the normal hierarchy,
m1 = 0 and several values of θ012 in Table 2. It is clear that the sizes of ϵRMS are
approximately the same regardless of the value of θ012; we find that the smallest ϵRMS

for each θ012 varies by at most 17% for the examples shown. This can be explained
by the perturbation results derived above as follows. From Eq. (8) we have ϵRMS =
√

ϵ21 + ϵ22 + ϵ23 +
1
2ϵ

2
5 +

1
4ϵ

2
4 +

1
4(2ϵ1 + ϵ6)2/3; since m3 ≫ m1, m2 for the normal hierarchy

with m1 = 0 eV and the first order perturbations of the three masses are much smaller
than m3, we can assume δm0

31 ≈ m0
3 ≈ m3 ≈

√
∆m2 = 0.0493 eV. Then from Eq. (15)

we know that in order to get the correction δθ23 = −6.6◦ and δθ13 = 8.9◦ for any value of
θ012, we need ϵ5 = −0.0114 eV and ϵ2 = 0.0108 eV, so that

√

ϵ22 + ϵ25/2/3 = 0.00449 eV,
which is already close to the ϵRMS values found in Table 2. The small discrepancy can
be explained by the perturbation of the three masses and other ϵ’s. Hence, we can say
that the size of the perturbation mainly comes from the corrections to θ23 and θ13. From
Eq. (11) we know that the correction to θ12 is determined by the relative ratio of ϵ3 to ϵ6
and the actual size of the perturbation does not matter. This means that we can have
large corrections for θ012 with a (relatively) small perturbation.

We note that initial values of θ12 on the “dark side” (θ012 > 45◦ and m0
1 < m0

2) can
also fit the data with perturbations that are similar in magnitude to those needed for
tri-bimaximal mixing (see the entry for θ012 = 60◦ in Table 2).

5

Table 2: Top half: values of the perturbations (in 10−3 eV) that give the best-fit param-
eters in Table 1 and have the minimum ϵRMS for the given θ012, for the normal hierarchy
and m1 = 0. Bottom half: representative values that fit the experimental data within
2σ and for which all ϵij have a similar magnitude (with m0

1 = 0, m0
2 = 0.0054 eV,

m0
3 = 0.0595 eV, m1 = 0.0072 eV, δ = 180◦ and all other phases equal to 0).

θ012(
◦) ϵ11 ϵ12 ϵ13 ϵ22 ϵ23 ϵ33 ϵRMS

60 -3.05 -3.50 -5.99 -2.72 -1.52 5.77 4.10
45 (BM) -1.32 -4.74 -4.74 -3.58 -0.66 4.90 3.79
35.3 (TBM) 0.32 -4.66 -4.82 -4.40 0.16 4.08 3.74
30 (HM) 1.07 -4.31 -5.18 -4.78 0.54 3.71 3.79
0 0.00 -1.38 -8.11 -4.24 0.00 4.24 4.36

60 5.41 -4.17 -4.52 -5.00 -9.94 3.36 6.14
45 (BM) 6.76 -4.43 -4.26 -5.67 -9.27 2.69 6.08
35.3 (TBM) 7.66 -4.32 -4.37 -6.12 -8.82 2.24 6.08
30 (HM) 8.11 -4.17 -4.52 -6.35 -8.59 2.01 6.09
0 9.46 -2.52 -6.17 -7.02 -7.92 1.34 6.28

where i and j sum over neutrino flavors. Hence, ϵRMS is determined by the following
quantities: three initial masses, two initial Majorana phases, two final Majorana phases
and one final Dirac phase. We scan over these quantities with all phases taken to be
either 0 or 180◦ to find the minimum value of ϵRMS for a given θ012. We follow the same
procedure for classes (b) and (c) below. For class (d), all values of the phases are allowed.

We show the perturbations that give the smallest ϵRMS for the normal hierarchy,
m1 = 0 and several values of θ012 in Table 2. It is clear that the sizes of ϵRMS are
approximately the same regardless of the value of θ012; we find that the smallest ϵRMS

for each θ012 varies by at most 17% for the examples shown. This can be explained
by the perturbation results derived above as follows. From Eq. (8) we have ϵRMS =
√

ϵ21 + ϵ22 + ϵ23 +
1
2ϵ

2
5 +

1
4ϵ

2
4 +

1
4(2ϵ1 + ϵ6)2/3; since m3 ≫ m1, m2 for the normal hierarchy

with m1 = 0 eV and the first order perturbations of the three masses are much smaller
than m3, we can assume δm0

31 ≈ m0
3 ≈ m3 ≈

√
∆m2 = 0.0493 eV. Then from Eq. (15)

we know that in order to get the correction δθ23 = −6.6◦ and δθ13 = 8.9◦ for any value of
θ012, we need ϵ5 = −0.0114 eV and ϵ2 = 0.0108 eV, so that

√

ϵ22 + ϵ25/2/3 = 0.00449 eV,
which is already close to the ϵRMS values found in Table 2. The small discrepancy can
be explained by the perturbation of the three masses and other ϵ’s. Hence, we can say
that the size of the perturbation mainly comes from the corrections to θ23 and θ13. From
Eq. (11) we know that the correction to θ12 is determined by the relative ratio of ϵ3 to ϵ6
and the actual size of the perturbation does not matter. This means that we can have
large corrections for θ012 with a (relatively) small perturbation.

We note that initial values of θ12 on the “dark side” (θ012 > 45◦ and m0
1 < m0

2) can
also fit the data with perturbations that are similar in magnitude to those needed for
tri-bimaximal mixing (see the entry for θ012 = 60◦ in Table 2).

5



•  θo13	
  must	
  be	
  rela/vely	
  close	
  to	
  experimental	
  value	
  

•  Smallest	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  meV	
  (m0
3	
  =	
  60	
  meV):	
  

•  Possibili/es	
  with	
  all	
  εij	
  having	
  same	
  order	
  of	
  magnitude:	
  

Table 1: Best-fit values and 2σ ranges of the oscillation parameters [14] used to find the
ϵij , with δm2 ≡ |m2|2 −m2

1 and ∆m2 ≡ |m3|2 − (m2
1 + |m2|2)/2.

Hierarchy θ12(◦) θ13(◦) θ23(◦) δm2(10−5eV2) |∆m2|(10−3eV2)
Normal 33.6+2.1

−2.0 8.9+0.9
−0.9 38.4+3.6

−2.3 7.54+0.46
−0.39 2.43+0.12

−0.16

Inverted 33.6+2.1
−2.0 9.0+0.8

−1.0 38.8+5.3
−2.3 ⊕ 47.5− 53.2 7.54+0.46

−0.39 2.42+0.11
−0.16

The first order corrections to the mixing angles are

δθ(1)12 =
1

2
arctan

2
√
2ϵ3 cos 2θ012 − ϵ6 sin 2θ012

2
√
2ϵ3 sin 2θ012 + ϵ6 cos 2θ012 + 2δm0

21

, (11)

δθ(1)23 =
ϵ5s212 −

√
2ϵ2s12c12

2δm0
31

+
ϵ5c212 +

√
2ϵ2s12c12

2δm0
32

, (12)

δθ(1)13 =

√
2ϵ2c212 − ϵ5s12c12

2δm0
31

+

√
2ϵ2s212 + ϵ5s12c12

2δm0
32

, (13)

and the second order correction to θ12 is

δθ(2)12 = −
√
2ϵ2ϵ5 cos 2(θ012 + δθ(1)12 ) + (ϵ22 − ϵ25/2) sin 2(θ

0
12 + δθ(1)12 )

4δm0
21δm

0
32

. (14)

Imposing |δm0
21| ≪ |δm0

31|, the expressions for δθ(1)23 and δθ(1)13 simplify to

δθ(1)23 ≃
ϵ5

2δm0
31

, δθ(1)13 ≃
√
2ϵ2

2δm0
31

. (15)

We note that while δθ(1)23 and δθ(1)13 are suppressed by a factor of order ϵj/δm0
31, to leading

order δθ12 depends only on ratios of linear combinations of ϵ3, ϵ6 and δm0
21 (which is

O(ϵij)). Therefore large corrections to θ12 are possible even for small corrections to θ23
and θ13.

A recent global three-neutrino fit [14] yields the parameter values in Table 1. We
have done a numerical search to find perturbed mass matrices that give the oscillation
parameters and which have small perturbations. In our search, we first fix θ023 = 45◦ and
θ013 = 0, consistent with µ − τ symmetry, and choose a particular value for θ012 and the
magnitude of m1 for the normal hierarchy (or m3 for the inverted hierarchy). The global
fit in Table 1 then defines the magnitudes of the other two final masses and the three
final mixing angles (since θ013 = 0, the initial Dirac phase does not matter).

We characterize the size of the perturbation as the root-mean-square (RMS) value of
the perturbations, i.e.,

ϵRMS =

√

∑3
i,j=1 |Mij −M0ij |2

9
, (16)

4

Class	
  b	
  (θ012	
  =	
  0)	
  

Table 4: Top half: same as Table 2, except for class (b) (θ012 = 0). Bottom half: same as
Table 2, except for class (b).

θ013(
◦) ϵ11 ϵ12 ϵ13 ϵ22 ϵ23 ϵ33 ϵRMS

0 0.00 -1.38 -8.11 -4.24 0.00 4.24 4.36
5 0.48 1.44 -5.28 -4.48 -0.24 4.00 3.27
10 -0.44 4.21 -2.52 -4.02 0.22 4.46 3.06
15 -2.64 6.59 -0.14 -2.92 1.32 5.56 3.90
20 -5.85 8.30 1.57 -1.32 2.93 7.17 5.24

0 9.46 -2.52 -6.17 -7.02 -7.92 1.34 6.28
5 9.01 1.13 -2.52 -6.80 -7.69 1.56 5.41
10 7.66 4.67 1.02 -6.12 -7.02 2.24 5.22
15 5.47 8.00 4.35 -5.03 -5.93 3.33 5.80
20 2.50 11.00 7.35 -3.54 -4.44 4.82 6.92

θ012 = 0. Therefore small perturbations can fit the experimental data for a wide range of
θ012 and θ013 for class (d).

In summary, we studied small perturbations to Majorana mass matrices with µ − τ
symmetry that yield experimentally preferred oscillation parameters. We find that the
size of the perturbations (which decreases as the neutrino mass scale is increased), is
mainly determined by the corrections to θ23 and θ13, and that small perturbations can
give a very large correction to θ12 because to first order, the θ12 correction depends only
on the ratio of perturbation terms and not on their absolute size. Hence, most mixing
scenarios with µ− τ symmetry can explain the experimental data with perturbations of
similar magnitude, and tri-bimaximal mixing has no special place among scenarios with
µ − τ symmetry. We also find that slightly perturbed µ − τ symmetric models with
θ12 = 0 or 90◦ are viable for θ13 < 20◦.

Acknowledgments: KW thanks the University of Kansas for its hospitality during
the initial stages of this work. This research was supported by the U.S. Department of
Energy under Grant Nos. DE-FG02-01ER41155 and DE-FG02-04ER41308, and by the
NSF under Grant No. PHY-0544278.
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Because of the nonzero Majorana phases, in general, the mixing matrix would not remain
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Similar to the real case, we apply a unitary matrix Uδ to N ≡ M0 + Ẽ such that there
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Ẽ =

⎛

⎜

⎜

⎜

⎝

a beiφ
0
2/2 deiφ

0
3/2

beiφ
0
2/2 ceiφ

0
2 fei(φ

0
2+φ0

3)/2

deiφ
0
3/2 fei(φ

0
2+φ0

3)/2 geiφ
0
3

⎞

⎟

⎟

⎟

⎠

, (18)

with

a = ϵ4(s
0
12)

2 + [ϵ1(c
0
13)

2 − ϵ3s
0
2×13e

iδ0 + ϵ6(s
0
13)

2e2iδ
0

](c012)
2 + (ϵ5s

0
13e

iδ0 − ϵ2c
0
13)s

0
2×12 ,

b = ϵ2c
0
13c

0
2×12 + [ϵ1(c

0
13)

2 − ϵ4 + ϵ6(s
0
13)

2e2iδ
0

]c012s
0
12 − [ϵ3s

0
2×12s

0
13c

0
13 + ϵ5c

0
2×12s

0
13]e

iδ0 ,

c = ϵ4(c
0
12)

2 + [ϵ1(c
0
13)

2 − ϵ3s
0
2×13e

iδ0 + ϵ6(s
0
13)

2e2iδ
0

](s012)
2 − (ϵ5s

0
13e

iδ0 − ϵ2c
0
13)s

0
2×12 ,

d = (ϵ1c
0
12c

0
13 − ϵ2s

0
12)s

0
13e

−iδ0 − ϵ6c
0
12c

0
13s

0
13e

iδ0 + ϵ3c
0
12c

0
2×13 − ϵ5c

0
13s

0
12 ,

f = (ϵ1s
0
12c

0
13 + ϵ2c

0
12)s

0
13e

−iδ0 − ϵ6s
0
12c

0
13s

0
13e

iδ0 + ϵ3s
0
12c

0
2×13 + ϵ5c

0
13c

0
12 ,

g = ϵ6(c
0
13)

2 + ϵ3s
0
2×13e

−iδ0 + ϵ1(s
0
13)

2e−2iδ0 , (19)

Similar to the real case, we apply a unitary matrix Uδ to N ≡ M0 + Ẽ such that there
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Ẽ =

⎛

⎜

⎜

⎜

⎝

a beiφ
0
2/2 deiφ

0
3/2

beiφ
0
2/2 ceiφ

0
2 fei(φ

0
2+φ0

3)/2

deiφ
0
3/2 fei(φ

0
2+φ0

3)/2 geiφ
0
3

⎞

⎟

⎟

⎟

⎠

, (18)

with

a = ϵ4(s
0
12)

2 + [ϵ1(c
0
13)

2 − ϵ3s
0
2×13e

iδ0 + ϵ6(s
0
13)

2e2iδ
0

](c012)
2 + (ϵ5s

0
13e

iδ0 − ϵ2c
0
13)s

0
2×12 ,

b = ϵ2c
0
13c

0
2×12 + [ϵ1(c

0
13)

2 − ϵ4 + ϵ6(s
0
13)

2e2iδ
0

]c012s
0
12 − [ϵ3s

0
2×12s

0
13c

0
13 + ϵ5c

0
2×12s

0
13]e

iδ0 ,

c = ϵ4(c
0
12)

2 + [ϵ1(c
0
13)

2 − ϵ3s
0
2×13e

iδ0 + ϵ6(s
0
13)

2e2iδ
0

](s012)
2 − (ϵ5s

0
13e

iδ0 − ϵ2c
0
13)s

0
2×12 ,

d = (ϵ1c
0
12c

0
13 − ϵ2s

0
12)s

0
13e

−iδ0 − ϵ6c
0
12c

0
13s

0
13e

iδ0 + ϵ3c
0
12c

0
2×13 − ϵ5c

0
13s

0
12 ,

f = (ϵ1s
0
12c

0
13 + ϵ2c

0
12)s

0
13e

−iδ0 − ϵ6s
0
12c

0
13s

0
13e

iδ0 + ϵ3s
0
12c

0
2×13 + ϵ5c

0
13c

0
12 ,

g = ϵ6(c
0
13)

2 + ϵ3s
0
2×13e

−iδ0 + ϵ1(s
0
13)

2e−2iδ0 , (19)

Similar to the real case, we apply a unitary matrix Uδ to N ≡ M0 + Ẽ such that there
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Similar to the real case, we apply a unitary matrix Uδ to N ≡ M0 + Ẽ such that there

are zeros in the 2-3 and 1-3 entries of the matrix UT
δ NUδ. Since |ϵij | ≪ |δm0

31|, to LO in
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lepton mass matrix to be diagonal. The final (resultant) mass matrix can be written as the
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⎜
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⎠
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⎟
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⎢

⎢

⎢
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⎜

⎜
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⎥
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where Ẽ = UT
0 EU0 can be explicitly written as
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Similar to the real case, we apply a unitary matrix Uδ to N ≡ M0 + Ẽ such that there

are zeros in the 2-3 and 1-3 entries of the matrix UT
δ NUδ. Since |ϵij | ≪ |δm0

31|, to LO in
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O(|ϵij |/|δm0
31|), Uδ can be written as

Uδ =

⎛

⎜

⎜

⎜

⎝

1 0 δ13

0 1 δ23

−δ∗13 −δ∗23 1

⎞

⎟

⎟

⎟

⎠

, (20)

where

δ13 ≈
|d|e−iφ13

|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
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2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)
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|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)

8

O(|ϵij |/|δm0
31|), Uδ can be written as

Uδ =

⎛

⎜

⎜

⎜

⎝

1 0 δ13

0 1 δ23

−δ∗13 −δ∗23 1

⎞

⎟

⎟

⎟

⎠

, (20)

where

δ13 ≈
|d|e−iφ13

|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)

8



•  Diagonalize	
  1-­‐2	
  submatrix	
  of	
  N	
  using:	
  

O(|ϵij |/|δm0
31|), Uδ can be written as

Uδ =

⎛

⎜

⎜

⎜

⎝

1 0 δ13

0 1 δ23

−δ∗13 −δ∗23 1

⎞

⎟

⎟

⎟

⎠

, (20)

where

δ13 ≈
|d|e−iφ13

|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)

8

O(|ϵij |/|δm0
31|), Uδ can be written as

Uδ =

⎛

⎜

⎜

⎜

⎝

1 0 δ13

0 1 δ23

−δ∗13 −δ∗23 1

⎞

⎟

⎟

⎟

⎠

, (20)

where

δ13 ≈
|d|e−iφ13

|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)

8

O(|ϵij |/|δm0
31|), Uδ can be written as

Uδ =

⎛

⎜

⎜

⎜

⎝

1 0 δ13

0 1 δ23

−δ∗13 −δ∗23 1

⎞

⎟

⎟

⎟

⎠

, (20)

where

δ13 ≈
|d|e−iφ13

|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)

8

θ13 = (8.5+0.2
−0.2)

◦ (8)

δθ23 ≃
ϵ22 − ϵ33
2δm0

31

, δθ13 ≃
√
2
ϵ12 + ϵ13
2δm0

31

δθ12 ≃
1

2
arctan

2
√
2ϵ3 cos 2θ012 − ϵ6 sin θ012

2
√
2ϵ3 sin 2θ012 + ϵ6 cos θ012 + 2δm0

21

ϵ3 = ϵ12 − ϵ13 , ϵ6 = ϵ22 + ϵ33 − 2ϵ23 − 2ϵ11

φa = arg(N11) , φb = arg(N12) , φc = arg(N22)

2



•  Pu}ng	
  it	
  together	
  we	
  have:	
  

•  LO	
  correc/ons	
  to	
  θ13,θ23	
  come	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (small)	
  
•  LO	
  correc/ons	
  to	
  θ12	
  and	
  δ	
  come	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (can	
  be	
  large)	
  
•  LO	
  correc/ons	
  to	
  φ2	
  and	
  φ3	
  come	
  from	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  (can	
  be	
  large)	
  	
  

The final mixing matrix that diagonalizes M and makes the diagonal elements real and

non-negative can be written as

U = U0UδU12(ξ,φ)P , (27)

where P = diag(eiω1/2, eiω2/2, eiω3/2), and

ω1 = − arg
[

(a+m0
1)c

2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
]

,

ω2 = − arg
[

(a+m0
1)s

2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
]

,

ω3 = − arg
(

m0
3 + geiφ

0
3

)

. (28)

As shown in Appendix B, the right-multiplication of U12(ξ,φ) does not change θ13 and

θ23. Hence, the LO corrections to θ13 and θ23 come from the right-multiplication of Uδ.

Since δ13 and δ23 are suppressed by a factor of |ϵij |/|δm0
31|, while ξ and φ are not, the LO

corrections to θ12 and the Dirac phases come from the right-multiplication of U12(ξ,φ), and

the LO corrections to the Majorana phases come from both U12(ξ,φ) and P .

By comparing U to the standard parametrization, we obtain the LO corrections to the

three mixing angles:

δθ13 =
|d|c012 cos(δ0 −

φ0
3

2 − φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |s012 cos(δ0 +

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(29)

δθ23 = −
|d|s012 cos(

φ0
3

2 + φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |c012 cos(

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(30)

δθ12 = arcsin

√

sin2(θ012 + ξ)− sin(2θ012) sin(2ξ) sin
2 φ

0
2 + 2φ

4
− θ012 , (31)

where t0ij denotes tan θ
0
ij . The LO corrections to the three phases can be written as

∆δ = α− β , (32)

∆φ2 = −2(α + β) + ω2 − ω1 , (33)

∆φ3 = −2β + ω3 − ω1 . (34)

9

Unperturbed	
  U	
  

Block	
  
diagonalizes	
  N	
  

Diagonalizes	
  2X2	
  

Makes	
  mi	
  ≥	
  0,	
  real	
  

θ13 = (8.5+0.2
−0.2)

◦ (8)

δθ23 ≃
ϵ22 − ϵ33
2δm0

31

, δθ13 ≃
√
2
ϵ12 + ϵ13
2δm0

31

δθ12 ≃
1

2
arctan

2
√
2ϵ3 cos 2θ012 − ϵ6 sin θ012

2
√
2ϵ3 sin 2θ012 + ϵ6 cos θ012 + 2δm0

21

ϵ3 = ϵ12 − ϵ13 , ϵ6 = ϵ22 + ϵ33 − 2ϵ23 − 2ϵ11

φa = arg(N11) , φb = arg(N12) , φc = arg(N22)

P =

⎛

⎜

⎝

eiω1/2 0 0
0 eiω2/2 0
0 0 eiω3/2

⎞

⎟

⎠

2

The final mixing matrix that diagonalizes M and makes the diagonal elements real and

non-negative can be written as

U = U0UδU12(ξ,φ)P , (27)

where P = diag(eiω1/2, eiω2/2, eiω3/2), and

ω1 = − arg
[

(a+m0
1)c

2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
]

,

ω2 = − arg
[

(a+m0
1)s

2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
]

,

ω3 = − arg
(

m0
3 + geiφ

0
3

)

. (28)

As shown in Appendix B, the right-multiplication of U12(ξ,φ) does not change θ13 and

θ23. Hence, the LO corrections to θ13 and θ23 come from the right-multiplication of Uδ.

Since δ13 and δ23 are suppressed by a factor of |ϵij |/|δm0
31|, while ξ and φ are not, the LO

corrections to θ12 and the Dirac phases come from the right-multiplication of U12(ξ,φ), and

the LO corrections to the Majorana phases come from both U12(ξ,φ) and P .

By comparing U to the standard parametrization, we obtain the LO corrections to the

three mixing angles:

δθ13 =
|d|c012 cos(δ0 −

φ0
3

2 − φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |s012 cos(δ0 +

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(29)

δθ23 = −
|d|s012 cos(

φ0
3

2 + φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |c012 cos(

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(30)

δθ12 = arcsin

√

sin2(θ012 + ξ)− sin(2θ012) sin(2ξ) sin
2 φ

0
2 + 2φ

4
− θ012 , (31)

where t0ij denotes tan θ
0
ij . The LO corrections to the three phases can be written as

∆δ = α− β , (32)

∆φ2 = −2(α + β) + ω2 − ω1 , (33)

∆φ3 = −2β + ω3 − ω1 . (34)

9

O(|ϵij |/|δm0
31|), Uδ can be written as

Uδ =

⎛

⎜

⎜

⎜

⎝

1 0 δ13

0 1 δ23

−δ∗13 −δ∗23 1

⎞

⎟

⎟

⎟

⎠

, (20)

where

δ13 ≈
|d|e−iφ13

|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)
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O(|ϵij |/|δm0
31|), Uδ can be written as

Uδ =

⎛

⎜

⎜

⎜

⎝

1 0 δ13

0 1 δ23

−δ∗13 −δ∗23 1

⎞

⎟

⎟

⎟

⎠

, (20)

where

δ13 ≈
|d|e−iφ13

|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)
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O(|ϵij |/|δm0
31|), Uδ can be written as

Uδ =

⎛

⎜

⎜

⎜

⎝

1 0 δ13

0 1 δ23

−δ∗13 −δ∗23 1

⎞

⎟

⎟

⎟

⎠

, (20)

where

δ13 ≈
|d|e−iφ13

|m0
3 −m0

1e
−2iφ13 |

, δ23 ≈
|f |e−iφ23

|m0
3 −m0

1e
−2iφ23 |

, (21)

with tanφ13 = m0
3+m0

1

m0
3−m0

1

tan [arg(d) + φ0
3/2] and tanφ23 = m0

3+m0
1

m0
3−m0

1

tan
[

arg(f) + φ0
2+φ0

3

2

]

. After

block-diagonalization, the LO correction to m3 is

δm3 =
∣

∣

∣
m0

3 + geiφ
0
3

∣

∣

∣
−m0

3 . (22)

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-

diagonalization. Using the procedure described in Appendix A, we diagonalize this submatrix

using the unitary matrix

U12(ξ,φ) =

⎛

⎜

⎜

⎜

⎝

cξ sξe−iφ 0

−sξeiφ cξ 0

0 0 1

⎞

⎟

⎟

⎟

⎠

, (23)

where

φ = arctan
|a+m0

1| sin(φa − φb)− |ceiφ0
2 +m0

2| sin(φc − φb)

|a+m0
1| cos(φa − φb) + |ceiφ0

2 +m0
2| cos(φc − φb)

, (24)

ξ =
1

2
arctan

2|b|
|ceiφ0

2 +m0
2| cos(φc + φ− φb)− |a+m0

1| cos(φa − φ− φb)
, (25)

with φa = arg(a+m0
1), φb = arg(b) + φ0

2/2 and φc = arg(ceiφ
0
2 +m0

2). In addition, we obtain

the LO corrections to m1 and m2 as

δm1 =
∣

∣

∣
(a+m0

1)c
2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
∣

∣

∣
−m0

1 ,

δm2 =
∣

∣

∣
(a+m0

1)s
2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
∣

∣

∣
−m0

2 . (26)
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The final mixing matrix that diagonalizes M and makes the diagonal elements real and

non-negative can be written as

U = U0UδU12(ξ,φ)P , (27)

where P = diag(eiω1/2, eiω2/2, eiω3/2), and

ω1 = − arg
[

(a+m0
1)c

2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
]

,

ω2 = − arg
[

(a+m0
1)s

2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
]

,

ω3 = − arg
(

m0
3 + geiφ

0
3

)

. (28)

As shown in Appendix B, the right-multiplication of U12(ξ,φ) does not change θ13 and

θ23. Hence, the LO corrections to θ13 and θ23 come from the right-multiplication of Uδ.

Since δ13 and δ23 are suppressed by a factor of |ϵij |/|δm0
31|, while ξ and φ are not, the LO

corrections to θ12 and the Dirac phases come from the right-multiplication of U12(ξ,φ), and

the LO corrections to the Majorana phases come from both U12(ξ,φ) and P .

By comparing U to the standard parametrization, we obtain the LO corrections to the

three mixing angles:

δθ13 =
|d|c012 cos(δ0 −

φ0
3

2 − φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |s012 cos(δ0 +

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(29)

δθ23 = −
|d|s012 cos(

φ0
3

2 + φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |c012 cos(

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(30)

δθ12 = arcsin

√

sin2(θ012 + ξ)− sin(2θ012) sin(2ξ) sin
2 φ

0
2 + 2φ

4
− θ012 , (31)

where t0ij denotes tan θ
0
ij . The LO corrections to the three phases can be written as

∆δ = α− β , (32)

∆φ2 = −2(α + β) + ω2 − ω1 , (33)

∆φ3 = −2β + ω3 − ω1 . (34)

9



•  Result	
  (to	
  LO):	
  

•  LO	
  correc/ons	
  to	
  θ13,θ23	
  are	
  small	
  (~	
  εij/δm0
31)	
  

•  LO	
  correc/ons	
  to	
  θ13	
  can	
  be	
  large	
  (-­‐ξ	
  ≤	
  δθ12	
  ≤	
  ξ)	
  

The final mixing matrix that diagonalizes M and makes the diagonal elements real and

non-negative can be written as

U = U0UδU12(ξ,φ)P , (27)

where P = diag(eiω1/2, eiω2/2, eiω3/2), and

ω1 = − arg
[

(a+m0
1)c

2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
]

,

ω2 = − arg
[

(a+m0
1)s

2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
]

,

ω3 = − arg
(

m0
3 + geiφ

0
3

)

. (28)

As shown in Appendix B, the right-multiplication of U12(ξ,φ) does not change θ13 and

θ23. Hence, the LO corrections to θ13 and θ23 come from the right-multiplication of Uδ.

Since δ13 and δ23 are suppressed by a factor of |ϵij |/|δm0
31|, while ξ and φ are not, the LO

corrections to θ12 and the Dirac phases come from the right-multiplication of U12(ξ,φ), and

the LO corrections to the Majorana phases come from both U12(ξ,φ) and P .

By comparing U to the standard parametrization, we obtain the LO corrections to the

three mixing angles:

δθ13 =
|d|c012 cos(δ0 −

φ0
3

2 − φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |s012 cos(δ0 +

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(29)

δθ23 = −
|d|s012 cos(

φ0
3

2 + φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |c012 cos(

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(30)

δθ12 = arcsin

√

sin2(θ012 + ξ)− sin(2θ012) sin(2ξ) sin
2 φ

0
2 + 2φ

4
− θ012 , (31)

where t0ij denotes tan θ
0
ij . The LO corrections to the three phases can be written as

∆δ = α− β , (32)

∆φ2 = −2(α + β) + ω2 − ω1 , (33)

∆φ3 = −2β + ω3 − ω1 . (34)
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•  LO	
  correc/ons	
  to	
  phases	
  (can	
  be	
  large):	
  

•  where	
  

The final mixing matrix that diagonalizes M and makes the diagonal elements real and

non-negative can be written as

U = U0UδU12(ξ,φ)P , (27)

where P = diag(eiω1/2, eiω2/2, eiω3/2), and

ω1 = − arg
[

(a+m0
1)c

2
ξ + (ceiφ

0
2 +m0

2)s
2
ξe

2iφ − 2bsξcξe
iφ
]

,

ω2 = − arg
[

(a+m0
1)s

2
ξe

−2iφ + (ceiφ
0
2 +m0

2)c
2
ξ + 2bsξcξe

−iφ
]

,

ω3 = − arg
(

m0
3 + geiφ

0
3

)

. (28)

As shown in Appendix B, the right-multiplication of U12(ξ,φ) does not change θ13 and

θ23. Hence, the LO corrections to θ13 and θ23 come from the right-multiplication of Uδ.

Since δ13 and δ23 are suppressed by a factor of |ϵij |/|δm0
31|, while ξ and φ are not, the LO

corrections to θ12 and the Dirac phases come from the right-multiplication of U12(ξ,φ), and

the LO corrections to the Majorana phases come from both U12(ξ,φ) and P .

By comparing U to the standard parametrization, we obtain the LO corrections to the

three mixing angles:

δθ13 =
|d|c012 cos(δ0 −

φ0
3

2 − φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |s012 cos(δ0 +

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(29)

δθ23 = −
|d|s012 cos(

φ0
3

2 + φ13)

|m0
3 −m0

1e
−2iφ13 |

+
|f |c012 cos(

φ0
2−φ0

3

2 − φ23)

|m0
3 −m0

1e
−2iφ23 |

(30)

δθ12 = arcsin

√

sin2(θ012 + ξ)− sin(2θ012) sin(2ξ) sin
2 φ

0
2 + 2φ

4
− θ012 , (31)

where t0ij denotes tan θ
0
ij . The LO corrections to the three phases can be written as

∆δ = α− β , (32)

∆φ2 = −2(α + β) + ω2 − ω1 , (33)

∆φ3 = −2β + ω3 − ω1 . (34)
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where

α = − arctan
tan θ012 tan ξ sin(φ

0
2/2 + φ)

1− tan θ012 tan ξ cos(φ
0
2/2 + φ)

, (35)

and

β = arctan
tan ξ sin(φ0

2/2 + φ)

tan θ012 + tan ξ cos(φ0
2/2 + φ)

. (36)

From Eq. (31), we see that δθ12 varies from −ξ to +ξ depending on the initial Majorana

phase φ0
2 and the perturbation phase φ. Since ξ and φ depend only on the ratios of linear

combinations of ϵij’s and δm0
21, large corrections to θ12 and the Dirac and Majorana phases

are possible even for small perturbations. However, corrections can be small in special cases,

e.g., if φ0
2 is close to 180◦ for the inverted hierarchy, φ approaches 90◦ and ξ is suppressed

by a factor of |ϵij |/(m0
2 + m0

1), so that the corrections to θ12 and the Dirac and Majorana

phases are also small.

Note that the corrections in the complex case are strongly dependent on the phases of

ϵij , and the initial values of the Dirac and Majorana phases. If we take ϵij ’s to be real, and

set δ0 = φ0
2 = φ0

3 = 0 in Eqs. (29), (30) and (31), we recover Eq. (14).

3 Perturbations to µ− τ symmetry

As an illustration of our analytic results, we study perturbations on initial neutrino mass

matrices with µ−τ symmetry. There are four classes of mixing with µ−τ symmetry [7]: (a)

θ023 = 45◦, θ013 = 0; (b) θ023 = 45◦, θ012 = 0; (c) θ023 = 45◦, θ012 = 90◦; (d) θ023 = 45◦, δ0 = ±90◦.

In Ref. [15], it was shown that the initial class (a) can be perturbed to class (d) for a specific

model. Here we reproduce the results of Ref. [15] by applying our general perturbation

formulas. The complex neutrino mass matrix of Ref. [15] can be written (in our phase

convention) as

M = m0

⎛

⎜

⎜

⎜

⎝

1 + 2δ′′′ 0 0

0 δ′′′ −(1 + δ′′′)

0 −(1 + δ′′′) δ′′′

⎞

⎟

⎟

⎟

⎠

+m0

⎛

⎜

⎜

⎜

⎝

2δ′ δ′′ −δ′′∗

δ′′ 0 0

−δ′′∗ 0 0

⎞

⎟

⎟

⎟

⎠

, (37)

10



Example:	
  Perturba/ons	
  to	
  μ-­‐τ	
  symmetry	
  

•  Complex	
  perturba/ons	
  on	
  Class	
  a	
  can	
  give	
  Class	
  d	
  
	
  	
  	
  	
  	
  (shown	
  for	
  par/cular	
  case	
  by	
  Babu,	
  Ma,	
  Valle)	
  
•  Can	
  show	
  more	
  generally	
  
•  General	
  forms	
  of	
  mass	
  matrix	
  in	
  Classes	
  a	
  and	
  d:	
  

	
  
•  Then	
  

	
  	
  	
  	
  	
  	
  turns	
  type	
  	
  Ma	
  into	
  type	
  Md	
  
	
  

Grimus,	
  Lavoura	
  

where m0 is a common mass parameter, δ′′′, δ′ are real and |δ′|, |δ′′| ≪ |δ′′′|. We treat the

first term on the right-hand side of Eq. (37) as the initial mass matrix and the second term

as the perturbation. The initial mass matrix has class (a) µ− τ symmetry. In the standard

parametrization, we have θ023 =
π
4 , θ

0
12 = θ013 = φ0

2 = 0 and φ0
3 = π. The three initial masses

are m0
1 = m0

2 = m0(1 + 2δ′′′), and m0
3 = m0. In this case, Eq. (19) is greatly simplified:

a = 2m0δ
′ , b =

√
2m0Re (δ

′′) , c = f = g = 0 , d = i
√
2m0Im (δ′′) . (38)

From Eqs. (21), (24) and (25), we find

δ23 = 0 , δ13 ≈
Im (δ′′)√

2δ′′′
, φ = 0 , ξ =

1

2
arctan

√
2Re (δ′′)

−δ′
. (39)

Then the final mixing matrix can be written as

U = R23(
π

4
)P (0, π)R13(δ13)R12(ξ) (40)

= R23(
π

4
)U13(δ13,

π

2
)R12(ξ)P (0, π) .

Hence, the final mixing angles and the Dirac phase are

θ23 =
π

4
, θ12 =

1

2
arctan

√
2Re (δ′′)

−δ′
, θ13 =

Im (δ′′)√
2δ′′′

, δ =
π

2
, (41)

as in Ref. [15]. Note that the initial class (a) is perturbed to class (d), and that the large

change of the Dirac phase δ coincides with the deviation of θ13 from 0.

The general form of the neutrino mass matrix with class (d) µ − τ symmetry and its

associated generalized CP symmetry has been recognized in Ref. [16], and deviations from

it were discussed in Ref. [17]. It has been shown in Ref. [16] that the general forms of the

neutrino mass matrices with class (a) and (d) µ− τ symmetry are (in our phase convention)

Ma =

⎛

⎜

⎜

⎜

⎝

x y −y

y z −w

−y −w z

⎞

⎟

⎟

⎟

⎠

, and Md =

⎛

⎜

⎜

⎜

⎝

u r −r∗

r s −v

−r∗ −v s∗

⎞

⎟

⎟

⎟

⎠

, (42)

respectively. Here x, y, z, w, r, s are complex and u, v are real. Hence, any perturbation

matrix of the form

E =

⎛

⎜

⎜

⎜

⎝

Re(ϵ11)− iIm(x) ϵ12 −ϵ∗12 + 2iIm(y)

ϵ12 ϵ22 Re(ϵ23) + iIm(w)

−ϵ∗12 + 2iIm(y) Re(ϵ23) + iIm(w) ϵ∗22 − 2iIm(z)

⎞

⎟

⎟

⎟

⎠

, (43)
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where m0 is a common mass parameter, δ′′′, δ′ are real and |δ′|, |δ′′| ≪ |δ′′′|. We treat the

first term on the right-hand side of Eq. (37) as the initial mass matrix and the second term

as the perturbation. The initial mass matrix has class (a) µ− τ symmetry. In the standard

parametrization, we have θ023 =
π
4 , θ

0
12 = θ013 = φ0

2 = 0 and φ0
3 = π. The three initial masses

are m0
1 = m0

2 = m0(1 + 2δ′′′), and m0
3 = m0. In this case, Eq. (19) is greatly simplified:

a = 2m0δ
′ , b =

√
2m0Re (δ

′′) , c = f = g = 0 , d = i
√
2m0Im (δ′′) . (38)

From Eqs. (21), (24) and (25), we find

δ23 = 0 , δ13 ≈
Im (δ′′)√

2δ′′′
, φ = 0 , ξ =

1

2
arctan

√
2Re (δ′′)

−δ′
. (39)

Then the final mixing matrix can be written as

U = R23(
π

4
)P (0, π)R13(δ13)R12(ξ) (40)

= R23(
π

4
)U13(δ13,

π

2
)R12(ξ)P (0, π) .

Hence, the final mixing angles and the Dirac phase are

θ23 =
π

4
, θ12 =

1

2
arctan

√
2Re (δ′′)

−δ′
, θ13 =

Im (δ′′)√
2δ′′′

, δ =
π

2
, (41)

as in Ref. [15]. Note that the initial class (a) is perturbed to class (d), and that the large

change of the Dirac phase δ coincides with the deviation of θ13 from 0.

The general form of the neutrino mass matrix with class (d) µ − τ symmetry and its

associated generalized CP symmetry has been recognized in Ref. [16], and deviations from

it were discussed in Ref. [17]. It has been shown in Ref. [16] that the general forms of the

neutrino mass matrices with class (a) and (d) µ− τ symmetry are (in our phase convention)

Ma =

⎛

⎜

⎜

⎜

⎝

x y −y

y z −w

−y −w z

⎞

⎟

⎟

⎟

⎠

, and Md =

⎛

⎜

⎜

⎜

⎝

u r −r∗

r s −v

−r∗ −v s∗

⎞

⎟

⎟

⎟

⎠

, (42)

respectively. Here x, y, z, w, r, s are complex and u, v are real. Hence, any perturbation

matrix of the form

E =

⎛

⎜

⎜

⎜

⎝

Re(ϵ11)− iIm(x) ϵ12 −ϵ∗12 + 2iIm(y)

ϵ12 ϵ22 Re(ϵ23) + iIm(w)

−ϵ∗12 + 2iIm(y) Re(ϵ23) + iIm(w) ϵ∗22 − 2iIm(z)

⎞

⎟

⎟

⎟

⎠

, (43)
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θ13 = (8.5+0.2
−0.2)

◦ (8)

δθ23 ≃
ϵ22 − ϵ33
2δm0

31

, δθ13 ≃
√
2
ϵ12 + ϵ13
2δm0

31

δθ12 ≃
1

2
arctan

2
√
2ϵ3 cos 2θ012 − ϵ6 sin θ012

2
√
2ϵ3 sin 2θ012 + ϵ6 cos θ012 + 2δm0

21

ϵ3 = ϵ12 − ϵ13 , ϵ6 = ϵ22 + ϵ33 − 2ϵ23 − 2ϵ11

φa = arg(N11) , φb = arg(N12) , φc = arg(N22)

P =

⎛

⎜

⎝

eiω1/2 0 0
0 eiω2/2 0
0 0 eiω3/2

⎞

⎟

⎠

E =

⎛

⎜

⎝

ϵ11 − iIm(x) ϵ12 −ϵ∗12 + 2iIm(y)
ϵ12 ϵ22 ϵ23 + iIm(w)

−ϵ∗12 + 2iIm(y) ϵ23 + iIm(w) ϵ∗22 − 2iIm(z)

⎞

⎟

⎠

E =

⎛

⎜

⎝

ϵ11 ϵ12 −ϵ∗12
ϵ12 ϵ22 ϵ23
−ϵ∗12 ϵ23 ϵ∗22

⎞

⎟

⎠

2



•  For	
  general	
  Ma	
  the	
  required	
  perturba/ons	
  are	
  large,	
  but	
  are	
  
small	
  for	
  real	
  Ma:	
  

θ13 = (8.5+0.2
−0.2)

◦ (8)

δθ23 ≃
ϵ22 − ϵ33
2δm0

31

, δθ13 ≃
√
2
ϵ12 + ϵ13
2δm0

31

δθ12 ≃
1

2
arctan

2
√
2ϵ3 cos 2θ012 − ϵ6 sin θ012

2
√
2ϵ3 sin 2θ012 + ϵ6 cos θ012 + 2δm0

21

ϵ3 = ϵ12 − ϵ13 , ϵ6 = ϵ22 + ϵ33 − 2ϵ23 − 2ϵ11

φa = arg(N11) , φb = arg(N12) , φc = arg(N22)

P =

⎛

⎜
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the correction to the Dirac phase can be large for small perturbations.
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and φij ≈ − argN l
ij .

If θl12 is also very small, the LO corrections to the three mixing angles in the PMNS

matrix are

δθ13 = −θl12s
0
23 cos(δ

0 − φl
12)− δl13c

0
23 cos(δ

0 − φl
13) ,

δθ23 = −δl23 cosφ
l
23 − δl13s

0
23t
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0 − φl
13) + θl12c

0
23t

0
13 cos(δ

0 − φl
12) ,

δθ12 =
1

c013
(δl13s

0
23 cosφ

l
13 − θl12c

0
23 cosφ

l
12) . (53)

However, in general, since N l
ij ∼ mτ |ϵlij |, and if |ϵlij | ∼ m2

µ/mτ = 6 MeV, θl12 could be very

large, which will give large corrections to the mixing angles in the PMNS matrix. Thus, the

situation in the charged sector is similar to that in the neutrino sector: the near degeneracy

of me and mµ (on the scale of mτ ) can lead to large corrections in 1-2 space.

For large θl12, the analytical expressions for the corrections to the mixing angles in the

PMNS matrix are cumbersome. Here, as an illustration, we consider the very simple scenario

in which

U l
δ =

⎛

⎜

⎜
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⎝

cos θl12 sin θl12 0

− sin θl12 cos θl12 0

0 0 1

⎞

⎟

⎟

⎟

⎠
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Then from Eq. (50), the final mixing angles in the PMNS matrix are given by

c13c23 = c013c
0
23 , (55)

s213 = (s013)
2(cl12)

2 + (s023)
2(c013)

2(sl12)
2 − 2s013c

0
13s

0
23s

l
12c

l
12 cos δ
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c213s
2
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[
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0
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0
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0
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2 + (sl12)
2(s012)

2(s013)
2(s023)

2

+ 2sl12s
0
12s

0
13s

0
23(c

l
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0
12c

0
23) cos δ

0
]

, (57)

where cl12 denotes cos θl12, and sl12 denotes sin θl12. As an example, if θl12 is the Cabibbo

angle and the initial PMNS matrix has bimaximal symmetry (θ012 = 45◦, θ013 = 0), then the

resulting θ12 and θ13 are consistent with the observed values to within 2σ.

There are eight parameters in Eqs. (55), (56) and (57). We use the best-fit values in

Table 1 for the normal hierarchy to fix θ12, θ13 and θ23. Then for given values of θ013 and δ0,
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resulting θ12 and θ13 are consistent with the observed values to within 2σ.

There are eight parameters in Eqs. (55), (56) and (57). We use the best-fit values in

Table 1 for the normal hierarchy to fix θ12, θ13 and θ23. Then for given values of θ013 and δ0,
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and φij ≈ − argN l
ij .

If θl12 is also very small, the LO corrections to the three mixing angles in the PMNS

matrix are
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0
23 cos(δ
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0
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13) ,
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23t
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13 cos(δ
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However, in general, since N l
ij ∼ mτ |ϵlij |, and if |ϵlij | ∼ m2

µ/mτ = 6 MeV, θl12 could be very
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Then from Eq. (50), the final mixing angles in the PMNS matrix are given by
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Figure 2: Dependence of θ023 on θ013 for small perturbations in the charged lepton sector when

U l
δ is given by Eq. (54), and the three mixing angles in the PMNS matrix are fixed by the

best-fit values of the global fit in Table 1 for the normal hierarchy.

the other three unknown parameters θ023, θ
l
12 and θ012 are determined by the three equations.

First, we obtain θ023 from Eq. (55) for a given θ013. Note that the constraints on θ023 and θ013

are symmetric for fixed θ13 and θ23, which can be seen from Fig. 2. Then we scan θl12 from

[−90◦, 90◦] to find solutions to Eq. (56) for a given δ0. For each solution of θl12, we obtain

θ012 from Eq. (57) by scanning θ012 from [−90◦, 90◦]. Note that we only scan the first and

fourth quadrants of θl12 [θ012], because Eq. (56) [Eq. (57)] is only sensitive to the relative sign

between the cosine and sine of θl12 [θ012]. Once we obtain θ023, θ
l
12 and θ012 for given values of

θ013 and δ0, the resulting PMNS matrix is completely determined (except for the diagonal

Majorana phase matrix) from Eqs. (50), (54) and (15). By comparing the PMNS matrix

with the standard parametrization, the resulting Dirac phase δ is also obtained for given

values of θ013 and δ0. The dependence of θl12, θ
0
12 and δ on δ0 for different values of θ013 is

shown in Fig. 3. From Figs. 2 and 3 we see that the initial mixing angles and the initial

Dirac phase can be very different from their observed values in the PMNS matrix due to

small perturbations in the charged lepton sector.

Generally, perturbations in both the charged lepton and neutrino sectors will be present.
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In this case, one must first use the procedure described in this section to find the corrections

to the initial PMNS matrix from perturbations in the charged lepton sector alone, then use

the new PMNS matrix to rotate to the basis in which the final charged lepton mass matrix is

diagonal, and ultimately use the procedure described in Section 2 to find the final corrections

to the parameters in the PMNS matrix from perturbations in the neutrino sector.

5 Neutrino oscillations with nonstandard interactions

We now apply our generalized perturbation procedure to a phenomenological study of neu-

trino oscillations that are affected by nonstandard scalar and nonstandard vector interactions

simultaneously.

As νe propagate in matter, they scatter on electrons via the V-A interaction. This is

described by the MSW potential [19], which is added to the vacuum oscillation Hamiltonian:

H =
1

2Eν
U

⎛

⎜

⎜

⎜

⎝

m2
1 0 0

0 m2
2 0

0 0 m2
3

⎞

⎟

⎟

⎟

⎠

U † +

⎛

⎜

⎜

⎜

⎝

√
2GFNe 0 0

0 0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

, (58)

where GF is the Fermi constant, Ne is the electron number density in the medium, and U

and mi are the mixing matrix and eigenmasses in vacuum, respectively.

New physics beyond the Standard Model can be probed by studying model-independent

nonstandard interactions in neutrino oscillation experiments; for a recent review see Ref. [20].

Most studies of nonstandard interactions are focused on the vector interaction, which can

be described by effective four-fermion operators of the form

LV =
GF√
2
ϵVαβ

[

ν̄αγ
ρ(1− γ5)νβ

][

f̄γρ(1± γ5)f
]

+ h.c. , (59)

where f = u, d, e is a charged fermion field, and ϵVαβ are dimensionless parameters that denote

the strength of the deviation from the standard interactions. Similar to the MSW term, the

matter effect due to the nonstandard vector interaction modifies the oscillation Hamiltonian

by additional potential terms,
√
2GFNfϵVαβ .

In addition, consider nonstandard scalar interactions, which may arise from a Lagrangian
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of the form

LS = λαβ
ν ν̄ανβφ+ λf f̄ fφ , (60)

where φ is a new scalar field, and λαβ
ν and λf are dimensionless coupling constants for neu-

trinos and charged fermions, respectively. In a mean field approximation, the nonstandard

scalar interaction will shift elements of the neutrino mass matrix by [21],

ϵαβ ≈
λαβ
ν

m2
φ

λfNf , (61)

where mφ is the mass of the scalar field, Nf is the number density of the charged fermion f ,

which is assumed to be nonrelativistic.

Tests of the inverse square law of the gravitational force put stringentmφ-dependent limits

on the coupling of a new scalar field to the nucleon field [22]. For mφ in the range, 10−6 eV to

10−10 eV, the current experimental upper limit of λN varies from 10−21 to 10−22 [23]. Since

ϵαβ ≃ 0.46 meV

(

λν

10−4

)(

λN

10−21

)(

Nf

NA/cm3

)(

10−6 eV

mφ

)2

, (62)

and Nf ∼ 1NA/cm3 ∼ 1010 eV3 on Earth and Nf ∼ 100NA/cm3 ∼ 1012 eV3 in the solar core

where most solar neutrinos are produced, in these environments, a λν of order 10−3 gives a

mass shift of order 1 meV for mφ = 10−6 eV. Such ϵαβ values are possible for much smaller

values of λν when mφ < 10−6 eV.

In the presence of both nonstandard scalar and nonstandard vector interactions, the

effective Hamiltonian for neutrino oscillations can be written as

Heff =
1

2Eν
M †

effMeff +
√
2GFNe

⎛

⎜

⎜

⎜

⎝

1 0 0

0 0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

+
√
2GFNf

⎛

⎜

⎜

⎜

⎝

ϵVee ϵVeµ ϵVeτ

ϵV ∗
eµ ϵVµµ ϵVµτ

ϵV ∗
eτ ϵV ∗

µτ ϵVττ

⎞

⎟

⎟

⎟

⎠

, (63)

where the effective mass matrix has the form

Meff = U∗

⎛

⎜

⎜

⎜

⎝

m1 0 0

0 m2 0

0 0 m3

⎞

⎟

⎟

⎟

⎠

U † +

⎛

⎜

⎜

⎜

⎝

ϵ11 ϵ12 ϵ13

ϵ12 ϵ22 ϵ23

ϵ13 ϵ23 ϵ33

⎞

⎟

⎟

⎟

⎠

. (64)

We apply our generalized perturbation procedure to the study of both nonstandard scalar

and nonstandard vector interactions. By incorporating the the corrections to the vacuum
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and Nf ∼ 1NA/cm3 ∼ 1010 eV3 on Earth and Nf ∼ 100NA/cm3 ∼ 1012 eV3 in the solar core

where most solar neutrinos are produced, in these environments, a λν of order 10−3 gives a

mass shift of order 1 meV for mφ = 10−6 eV. Such ϵαβ values are possible for much smaller

values of λν when mφ < 10−6 eV.
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We apply our generalized perturbation procedure to the study of both nonstandard scalar

and nonstandard vector interactions. By incorporating the the corrections to the vacuum
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In the presence of both nonstandard scalar and nonstandard vector interactions, the

effective Hamiltonian for neutrino oscillations can be written as

Heff =
1

2Eν
M †

effMeff +
√
2GFNe

⎛

⎜

⎜

⎜

⎝

1 0 0

0 0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

+
√
2GFNf

⎛

⎜

⎜

⎜

⎝

ϵVee ϵVeµ ϵVeτ

ϵV ∗
eµ ϵVµµ ϵVµτ

ϵV ∗
eτ ϵV ∗

µτ ϵVττ

⎞

⎟

⎟

⎟

⎠

, (63)

where the effective mass matrix has the form

Meff = U∗

⎛

⎜

⎜

⎜

⎝

m1 0 0

0 m2 0

0 0 m3

⎞

⎟

⎟

⎟

⎠

U † +

⎛

⎜

⎜

⎜

⎝

ϵ11 ϵ12 ϵ13

ϵ12 ϵ22 ϵ23

ϵ13 ϵ23 ϵ33

⎞

⎟

⎟

⎟

⎠

. (64)

We apply our generalized perturbation procedure to the study of both nonstandard scalar

and nonstandard vector interactions. By incorporating the the corrections to the vacuum
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•  E.g.,	
  oscilla/on	
  probability	
  due	
  with	
  V-­‐A	
  +	
  ma|er	
  effects:	
  

•  Let	
  θ23   θ23	
  +	
  δθ23	
  using	
  εij	
  from	
  perturba/on	
  of	
  the	
  
scalar	
  interac/ons	
  	
  (plus	
  correc/on	
  to	
  masses)	
  

oscillation parameters (arising from the scalar interaction) into the nonstandard vector in-

teraction formulas, we immediately obtain new formulas for oscillation probabilities with

both nonstandard scalar and nonstandard vector interactions. Taking the oscillations of νµ

in long baseline experiments as an example, the result for the νµ survival probability is [24]

Pµµ ≃ 1− s22×23

[

sin2 ∆m2
31L

4E

]

− |ϵVµτ | cosφV
µτs2×23

[

s22×23(
√
2GFNeL) sin

∆m2
31L

2E
+ 4c22×23

2
√
2GFNeE

∆m2
31

sin2 ∆m2
31L

4E

]

+ (|ϵVµµ|− |ϵVττ |)s22×23c2×23

[√
2GFNeL

2
sin

∆m2
31L

2E
− 2

2
√
2GFNeE

∆m2
31

sin2 ∆m2
31L

4E

]

, (65)

where ∆m2
31 = m2

3 −m2
1, s2×ij = sin 2θij , c2×ij = cos 2θij, and φV

µτ = arg ϵVµτ . After replacing

∆m2
31 → ∆m2

31 + 2(m3δm3 −m1δm1) and θ23 → θ23 + δθ23, where the shifts in mi and θ23

can be easily obtained from our perturbation results in Section 2, the new formula for both

nonstandard scalar and nonstandard vector interactions is as follows:

Pµµ ≃ 1− s22×23

[

sin2 ∆m2
31L

4E

]

−2δθ23 sin 4θ23 sin
2 ∆m2

31L

4E
−

(m3δm3 −m1δm1)L

2E
s22×23 sin

∆m2
31L

2E

− |ϵVµτ | cosφV
µτs2×23

[

s22×23(
√
2GFNeL) sin

∆m2
31L

2E
+ 4c22×23

2
√
2GFNeE

∆m2
31

sin2 ∆m2
31L

4E

]

+ (|ϵVµµ|− |ϵVττ |)s22×23c2×23

[√
2GFNeL

2
sin

∆m2
31L

2E
− 2

2
√
2GFNeE

∆m2
31

sin2 ∆m2
31L

4E

]

. (66)

We see that cancellations between the nonstandard scalar and vector terms are possible, a

study of which is beyond the scope of this paper.

6 Summary

We introduced a generalized procedure to study complex perturbations on Majorana neutrino

mass matrices. In the charged lepton basis, we derived analytic formulas for the corrections

to the three mixing angles, and the Dirac and Majorana phases for arbitrary initial mixing.

Since m1 and m2 are nearly degenerate, the corrections to θ12 and the Dirac and Majorana

phases could be very large. We performed a numerical analysis on the mass matrices with
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Summary	
  

•  Due	
  to	
  near	
  degeneracy	
  of	
  m1	
  and	
  m2,	
  large	
  correc/ons	
  to	
  θ12	
  
are	
  possible	
  with	
  small	
  perturba/ons	
  on	
  	
  	
  	
  	
  	
  	
  	
  	
  

•  Underlying	
  (unperturbed)	
  theory	
  need	
  not	
  have	
  θ12	
  close	
  to	
  
the	
  experimental	
  value	
  

•  Bimaximal	
  mixing	
  or	
  models	
  on	
  the	
  dark	
  side	
  are	
  possible	
  

•  Complex	
  perturba/ons	
  can	
  give	
  any	
  value	
  for	
  CP	
  phases	
  

•  Small	
  perturba/ons	
  to	
  charged	
  lepton	
  mass	
  matrix	
  can	
  give	
  
large	
  correc/ons	
  to	
  all	
  three	
  PMNS	
  angles.	
  

(

νe
e−

)

,

(

νµ
µ−

)

,

(

ντ
τ−

)

Mν = U∗MU †

Mν = M0 + E = U∗
0M0U

†
0 +

⎛

⎜

⎝

ϵ11 ϵ12 ϵ13
ϵ12 ϵ22 ϵ23
ϵ13 ϵ23 ϵ33

⎞

⎟

⎠

M0 =

⎛

⎜

⎝

m0
1 0 0
0 m0

2 0
0 0 m0

3

⎞

⎟

⎠

⎛

⎜

⎝

νe
νµ
ντ

⎞

⎟

⎠
=

⎛

⎜

⎝

c13c12 c13s12 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎟

⎠

⎛

⎜

⎝

1 0 0
0 eiφ2 0
0 0 eiφ3

⎞

⎟

⎠

⎛

⎜

⎝

ν1
ν2
ν3

⎞

⎟

⎠

|ν(t)⟩ = H|να(0)⟩ =
∑

j

e−iEjtVαj|νj(0)⟩, Ej ≃ pj + (m2
j/2E), t ≃ L/c

P (να → νβ) =
∑

j,k

V ∗
αjVβjVαkV

∗
βke

−iδm2

jk
L/2E

= sin2 2θ sin2(δm2L/2E) for 2 neutrinos

ν1, ν2, ν3 (1)

δm2 = δm2
21 = (7.50+0.19

−0.17)× 10−5 eV2 (2)

θ12 = (33.48+0.78
−0.75)

◦ (3)

∆m2 =
δm2

32 + δm2
31

2
= (2.457+0.047

−0.047)× 10−3 eV2 (4)

θ23 = (42.3+3.0
−1.6)

◦ (5)

= (−2.449+0.048
−0.047)× 10−3 eV2 (6)

θ23 = (49.5+1.5
−2.2)

◦ (7)


