Blazar neutrino emission models under scrutiny in wake of observational constraints

Felicia Krauß Uli Katz Matthias Kadler Karl Mannheim et al.

Collaborators and references

ECAP: G. Anton, A. Kappes, U. Katz, F. Krauß, J. Wilms GSFC: N. Gehrels, R. Ojha, D.J. Thompson MPIfR Bonn: E. Ros ITPA Würzburg: M. Kadler, K. Mannheim

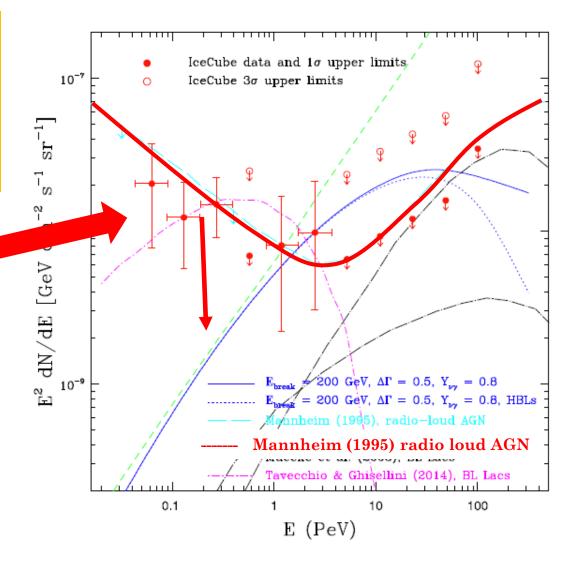
- Krauß, F., et al. (incl. Katz, U. & Mannheim, K.), TANAMI blazars in the IceCube>; PeV-neutrino fields, 2014 A&A 566 L7
- Adrian-Martinez, S., et al. (incl. Katz, U. & Mannheim, K.), ANTARES constrains a blazar origin of two IceCube PeV neutrino events, 2015, A&A 576 L 8
- Kadler, M., et al. (incl. Katz, U. & Mannheim, K.), Coincidence of a high-fluence blazar outburst with a PeV energy neutrino event, submitted (2015)

Which astrophysical objects emit PeV neutrinos ?

Blazar models under scrutiny

Blazars associated with PeV events

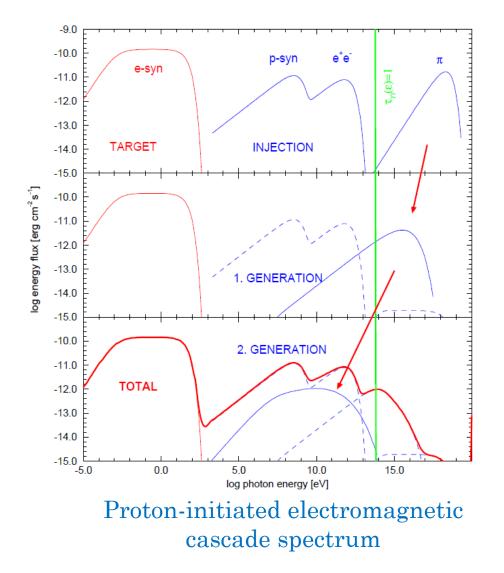
Antares constraints on TeV spectra

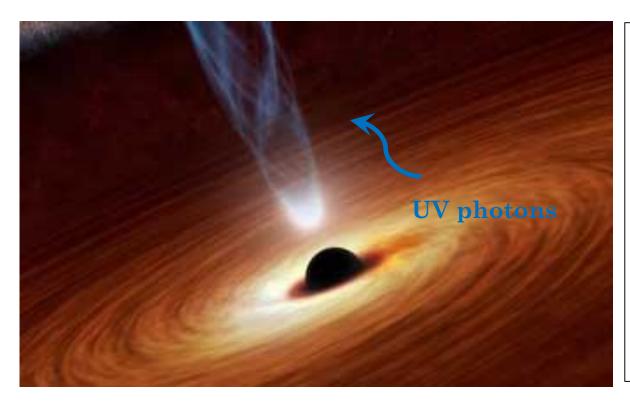

Which astrophysical objects emit PeV neutrinos?

- IceCube excess consistent with isotropy
 - \rightarrow Extragalactic source population
- Calorimetrically dominant non-thermal population
 - → Radio-loud AGN (Blazars and Radio Galaxies)
- Steep background
 → Signal events at highest energies
- Energy resolution (cascades) → Background suppression
- We choose the first three PeV events of IceCube for an astrophysical follow-up study → Ernie & Bert, Big Bird

Which astrophysical objects emit PeV neutrinos?

Motivation: Prediction for radio-loud AGN (KM, 1995, APh 3, 295)


> < 100 TeV: **upper limit** for neutrinos from pp-interactions (different beaming pattern) > 100 TeV: **normalized** spectrum using extragalactic gamma ray flux


Padovani et al., MNRAS 452, 1877 (2015)

Blazar models under scrutiny

- Extragalactic jets with shock acceleration (protons,electrons)
- Photo-meson production → neutrinos and gamma rays
- Gamma rays cascade < TeV with integral energy flux F_γ
- Neutrino energy flux $\mathbf{F}_{v} = \mathbf{F}_{\gamma}$
- Neutrino spectrum peaks at injection energies

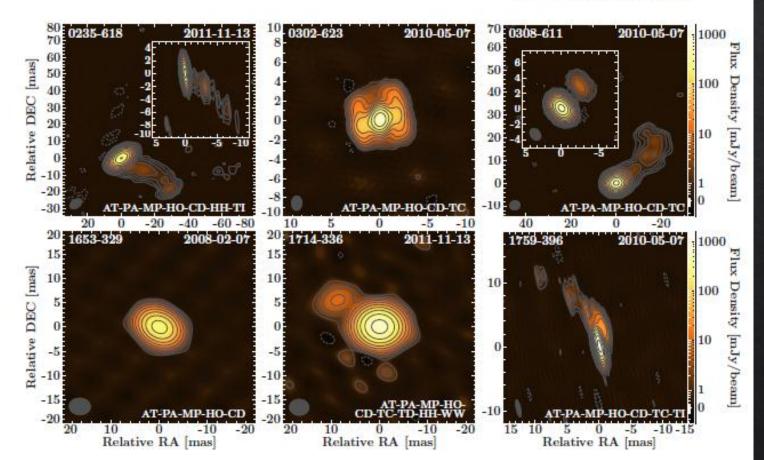
Blazar models under scrutiny

Low accretion rate: Infrared synchrotron photons act as target photons for accelerated protons in **BL Lac objects**

High accretion rate: UV photons from disk and surrounding scattering medium act as target photons in **FSRQs**

Neutrino spectrum peaks at EeV (BL Lacs) or PeV (FSRQ)

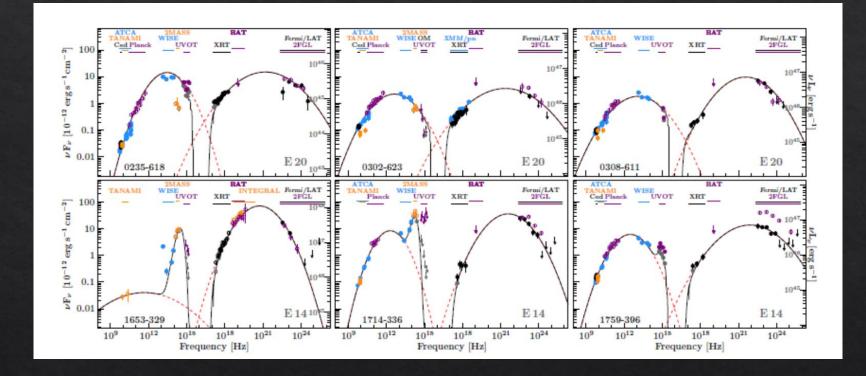
→ Expect mainly FSRQs associations at PeV energies!


PeV events observed by IceCube (as of 2014)

Southern events (Earth obscuration):

- **IC** 14 **1.04 PeV** •Bert IC 20 •Ernie 1.14 PeV 2.00 PeV
- •Big Bird IC 35

Source	RA[°]	Dec[°]	z	Class.	Θ[°]
0235-618	39.2218 ^b	-61 nie 16	0.47^{a}	FSRQ ^a	5.61
0302-623	45.9610°	20 Ernie b	1.35 ^a	FSRQ ^a	5.98
0308-611	47.48. 1 ^C	-60.9775°	1.48^{a}	FSRQ ^a	7.39
1653-329	254.0699 ^b	-22 rt 3b	2.40^{h}	FSRQ ^h	11.18
1714-336	259.4001	14 Bert 10	?	BL Lac	7.87
1759-396	270.67 IC	-39.6689^{e}	1.32^{g}	FSRQ ^g	12.50

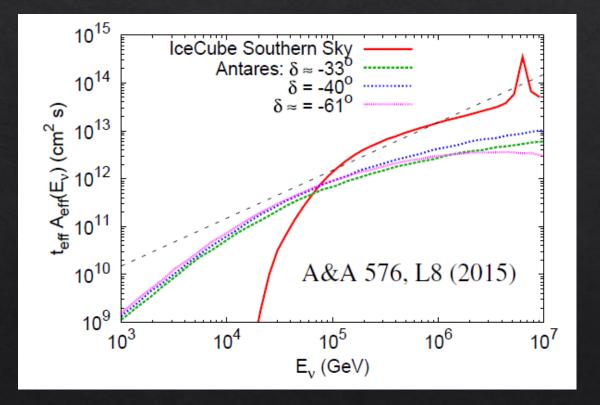

1714-336 shows a strong thermal UV bump and is probably a FSRQ misclassified as BL LAC.
 → Coincident sources are radio and gamma-ray bright FSRQ!

A&A 566, L7 (2014)

TANAMI Collaboration, Kadler et al.:

FSRQs show compact VLBI jets at radio frequencies

Integrated spectral energy distributions gauge expected PeV neutrino fluxes


Source	$F_{\gamma}({\rm erg cm^{-2} s^{-1}})$	Events
0235-618	$(1.0^{+0.5}_{-0.5}) \times 10^{-10}$	$0.19\substack{+0.04 \\ -0.04}$
0302-623	$(3.4^{+0.7}_{-0.7}) \times 10^{-11}$	$0.06^{+0.01}_{-0.01}$
0308-611	$(7.5^{+2.9}_{-2.9}) \times 10^{-11}$	$0.14\substack{+0.05\\-0.05}$
1653-329	$(4.5^{+0.5}_{-0.5}) \times 10^{-10}$	$0.86^{+0.10}_{-0.10}$
1714-336	$(2.4^{+0.5}_{-0.6}) \times 10^{-10}$	$0.46^{+0.10}_{-0.12}$
1759-396	$(1.2^{+0.3}_{-0.2}) \times 10^{-10}$	$0.23^{+0.50}_{-0.40}$
Total		1.9 ± 0.4

Maximum number of neutrino events at 1 PeV during 662 days of IceCube exposure from calorimetric relation

Additional neutrino events expected from faint, unresolved sources

Krauß et al. A&A (2014)

ANTARES constraints on TeV spectra

ANTARES sensitivity for IceCube PeV event locations

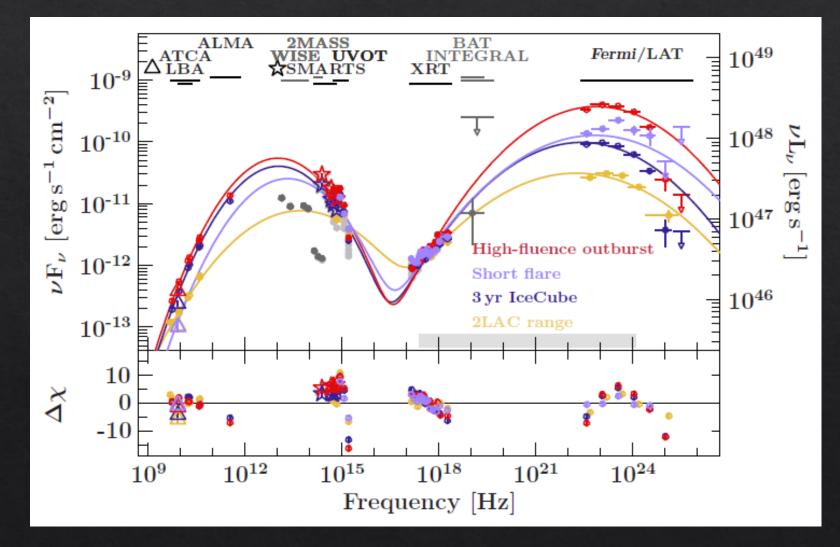
Superior sensitivity at <50 TeV due to Earth muon background suppression

A&A 576, L8 (2015)

ANTARES constraints on TeV spectra

Source	Nsig	р	Limit	$N_{\nu,\rm IC} = 1, 2, 3, 4$
0235-618	0	1	1.3	-2.4 -2.1 -2.0 -1.9
0302-623	0	1	1.3	-2.4 -2.1 -2.0 -1.9
0308-611	0	1	1.3	-2.4 -2.1 -2.0 -1.9
1653-329	1.1	0.10	2.9	<-2.5 -2.5 -2.3 -2.2
1714-336	0.9	0.04	3.5	<-2.5 -2.5 -2.3 -2.2
1759–396	0	1	1.4	-2.4 -2.1 -2.0 -1.8

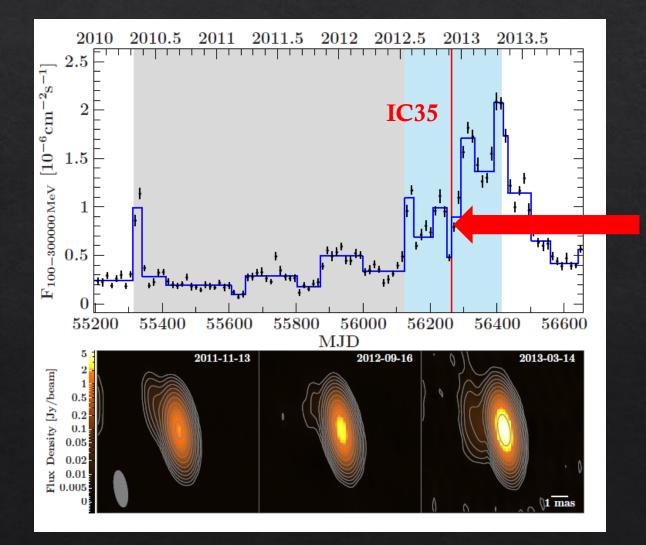
2FGL Name	Common Name	$F_{\gamma}(\mathrm{erg}\ \mathrm{cm}^{-2}\mathrm{s}^{-1})$	$N_{\nu,{ m PeV}}^{ m max}$
2FGL J1230.2-5258	PMN J1229-5303	$(2.4^{+1.5}_{-1.5}) \times 10^{-11}$	0.14
2FGL J1234.0-5733	PMN J1234-5736	$\left(1.1^{+0.4}_{-0.4}\right)\times10^{-11}$	0.06
2FGL J1303.5-4622	PMN J1303-4621	$\left(1.9^{+0.6}_{-0.6}\right)\times10^{-11}$	0.11
2FGL J1303.8-5537	PMN J1303-5540	$\left(1.04^{+0.11}_{-0.11}\right)\times10^{-10}$	0.38
2FGL J1304.3-4353	1RXS 130421.2-435308	$\left(2.11^{+0.25}_{-0.25}\right)\times10^{-11}$	0.12
2FGL J1307.5-4300	1RXS 130737.8-425940	$(8.4^{+1.7}_{-1.7}) \times 10^{-12}$	0.05
2FGL J1307.6-6704	PKS B 1304-668	$\left(1.54^{+0.15}_{-0.15}\right)\times10^{-10}$	0.89
2FGL J1314.5-5330	PMN J1315-5334	$\left(8.1^{+0.9}_{-0.9}\right)\times10^{-11}$	0.47
2FGL J1326.7-5254	PMN J1326-5256	$\left(1.04^{+0.21}_{-0.18}\right)\times10^{-10}$	0.59
2FGL J1329.2-5608	PMN J1329-5608	$\left(1.38^{+0.36}_{-0.29}\right)\times10^{-10}$	0.93
2FGL J1330.1-7002	PKS B 1326-697	$\left(1.53^{+0.11}_{-0.11}\right)\times10^{-10}$	0.89
2FGL J1352.6-4413	PKS B 1349-439	$(5.4^{+1.0}_{-1.0}) \times 10^{-11}$	0.32
2FGL J1400.6-5601	PMN J1400-5605	$\left(6.9^{+0.8}_{-0.8}\right)\times10^{-11}$	0.40
2FGL J1407.5-4257	CGRaBS J1407-4302	$\left(1.6^{+0.5}_{-0.5}\right)\times10^{-11}$	0.09
2FGL J1428.0-4206	PKS B1424-418	$\left(2.04^{+0.17}_{-0.16}\right)\times10^{-10}$	1.57
2FGL J1508.5-4957	PMN J1508-4953	$\left(7.6^{+3.0}_{-2.3}\right)\times10^{-11}$	0.55
2FGL J1514.6-4751	PMN J1514-4748	$\left(5.6^{+0.6}_{-0.6}\right)\times10^{-11}$	0.32
Sum (2LAC)			7.9


Blazars associated with Big Bird

17 blazars from the 2nd Fermi Catalogue

Strongest individual source:

B 1424-418 (FSRQ)


Blazars associated with Big Bird

B 1424-418:

Expected number of neutrino events increases above 2LAC estimate during 3-year IceCube exposure due to multifrequency outburst

Blazars associated with Big Bird

High-fluence (pc-scale) radio and gamma-ray outburst of B1424-418: Temporally and spatially coincident with Big Bird neutrino event.

Probability for chance coincidence 5%.

Blazars associated with Big Bird

B1424-418 during 9 months of main outburst:

- Straw person's model with δ-distribution neutrino spectrum peaking at 2 PeV: Expect max. 4.5 events
- Realistic E^{-2.3} neutrino spectrum from 30 TeV to 10 PeV: Expect 0.11 events (Poisson probability for detecting 1 event is 10%, i.e. 3 times higher probability than for total 2LAC blazar emission in FOV of Big Bird)

Why do we not detect PeV neutrinos from every bright blazar?

- 10 highest-fluence blazars from Fermi during 3 years of IceCube
- Northern hemisphere sensitivity to PeV events lower than southern hemisphere sensitivity
- Last column gives expected number of events associated with source based on positional coincidence
- ♦ Gravitationally-lensed blazar PKS1830-21 only marginally outside of R₅₀ of IC14. Time of IC14 coincides with outburst.
- Only for 2 out of the 10 an association is expected

Name	R.A.	Dec.	F_{γ}	$N_{\nu,{\rm PeV}}^{\rm max}$	$N_{ m u, PeV}^{ m pred}$	$N_{\nu,{\rm PeV}}^{\rm pos}$
	[Deg]	[Deg]	$[10^{-10} \text{erg cm}^{-2} \text{s}^{-1}]$	δ	E ^{-2.3}	
PKS 1830-21	278.4	-21.1	(14.34 ± 0.27)	8.3	0.21	1
PKS B1510-089	228.2	-9.1	(13.31 ± 0.13)	7.7	0.19	0
3C 454.3	343.5	16.2	(37.50 ± 01.3)	7.6	0.19	0
PKS B1424-418	217.0	-42.1	(7.82 ± 0.16)	4.5	0.11	1
PKS B2326-502	352.3	-49.9	(4.69 ± 0.10)	2.7	0.07	0
PKS B0537-441	84.7	-44.1	(3.84 ± 0.08)	2.2	0.06	0
PKS B1222+216	186.2	21.4	(7.94 ± 0.12)	1.6	0.04	0
CTA 102	338.2	11.7	(6.42 ± 0.12)	1.3	0.03	0
(HB89) 1633+382	248.8	38.1	(6.28 ± 0.09)	1.3	0.03	0
B2 1520+31	230.5	31.7	(4.75 ± 0.25)	1.3	0.02	0

Why do we not detect PeV neutrinos from every bright blazar?

Most neutrinos originate from faint, unresolved sources:

- Unresolved sources from faint end of blazar flux distribution
- Unresolved sources from much fainter unbeamed counterparts of blazars (radio galaxies)

2nd Fermi catalogue (cf. Ackermann et al., ApJ, 2011)

- 50% blazar contribution to extragalactic gamma-ray background
- 70% of total blazar emission from bright, resolved blazars
- 30% of total blazar emission from faint, unresolved blazars

If diffuse neutrino flux follows gamma-ray flux, < 1/3 of the PeV neutrinos originate from 2LAC gamma-ray blazars

Summary

- The IceCube astrophysical neutrino flux is consistent with predictions for radio-loud AGN Mannheim, Aph 3, 295 (1995), cf. Padovani et al., MNRAS 452, 1877 (2015)
- FSRQ are expected to deliver the dominant PeV neutrino flux (photo-meson production with UV target photons from the accretion disk and the surrounding scattering medium)

Mannheim, NuPhS 256, 264 (2014), cf. Dermer, et al., JHEAp 3, 29 (2014)

• For the first three PeV events detected by IceCube, positionally coincident blazars were shown to be energetically capable to produce these events

Krauß et al., (& Kadler, Katz, Mannheim) A&A 566, L7 (2014)

• The spectral index must be flatter than -2.4 based on ANTARES follow-up analysis

Adrián-Martínez et al. (ANTARES), A&A 576, L8 (2015)

Although no single point source clustering has been observed yet due to the low statistics, the extreme outburst of B1424-418 had a probability of 95% to not coincide with Big Bird in position and time just by chance. During the 9-month outburst, the Poisson probability for detecting a PeV neutrino event from B1424-417 amounted to a sizeable ~10%.
 Remark: Only less than 1/3 of the PeV neutrinos should stem from known 2LAC blazars.

Kadler et al. (& Katz, Krauß, Mannheim), submitted (2015)