KM3NeT – The next-generation neutrino telescope in the Mediterranean Sea

Uli Katz VHEPA 2016, Honolulu, Hawaii 8 January 2016

The plan for the next 30 minutes

- The KM3NeT project: Concept and design
- ARCA and ORCA
- Results from prototypes and the first string
- Neutrino astronomy: Selected sensitivity studies
- Summary

KM3NeT

The KM3NeT project: Concept and design

ANTARES: The first deep-sea v telescope

- Installed near Toulon at a depth of 2475m
- 12 strings with 25 storeys each, instrumented volume ~0.01km³
- Data taking in full configuration since 2008
- Proof of principle of deep-sea v telescope
- Lots of results but too small for cosmic neutrinos

The KM3NeT concept

The KM3NeT DOM

- 31 3-inch PMTs in 17-inch glass sphere (cathode area~ 3x10-inch PMTs)
 - 19 in lower, 12 in upper hemisphere
 - Suspended by plastic structure
- 31 PMT bases (total ~140 mW) (D)
- Front-end electronics (B,C)
- Al cooling shield and stem (A)
- Single penetrator
- Advantages:
 - Increased photocathode area
 - 1-vs-2 photo-electron separation
 → better sensitivity to coincidences
 - Directionality
 - Cost / photocathode area
 - Minimal number of penetrations
 → reduced risk

PMT specifications

Parameter	Requirement	
Photocathode diameter	> 72 mm	
Nominal Voltage for Gain 3x10 ⁶	900 – 1300 V	
Gain slope = $log_{10}(gain)/log_{10}(HV)$ 6.5 – 8.0		
QE at 404 nm > 23 %		
QE at 470 nm	> 18 %	
TTS (FWHM) < 5 ns		
Dark count rate (0.3 p.e. threshold) < 2 kHz		
Pre-pulses < 1 %		
Delayed pulses	ed pulses < 3.5 %	
Early afterpulses	< 2 %	
Late afterpulses	< 10 %	

PMTs available

+MELZ ...

ETEL D792

Hamamatsu R12199

HZC XP53B20

Fulfil specifications; orders placed / expected

First prototype not yet compliant with specifications (gain, dark rate, afterpulses, ...), further development under way

Note: In all cases price/photocathode area < 10-inch tubes (MELZ?)

KM3NeT readout

Power board

1 PMTs + bases cotopus boards

Central Logic Board (CLB)

All data to shore (optical fibres)

Online filter on shore

HV for PMTs

Discrimination w.r.t. predefined threshold

Signal collection

FPGA for TDC (time & time over threshold), time stamping (1 ns precision);

Interface for time synchronisation:

Control of calibration devices; Communication;

KM3NeT detection units (DUs)

- Mooring line:
 - Buoy (syntactic foam or empty spheres)
 - 2 pre-stretched Dyneema[©] ropes (4 mm diameter)
 - 18 storeys (one DOM each)
- Electro-optical backbone (VEOC):
 - Flexible hose ~ 6mm diameter
 - Oil-filled
 - Optical fibres and copper wires
 - At each storey: Break-out box for connection to 1 fibre + 2 wires (one single pressure transition)
 - Point-to-point connection DOM-shore for each DOM

Deployment

← Deploy to sea bed

Acoustic release

Unfurl →

Collect frame

ARCA and **ORCA**

- Astroparticle and Oscillation Research with Cosmics in the Abyss -

The building block concept

- Building block:
 - 115 detection units
 - Segmentation enforced by technical reasons
- Large block (neutrino astronomy)
 - Sensitivity per string for muons independent of block size above ~75 strings
 - One block ~ half IceCube
- Small block (neutrino oscillations)
 - Precision measurement of atmospheric neutrinos
 - One block ~ 6 Mtons
- Allows for staged, block-wise, multi-site installation

DU distance adjusted to scientific objective: 90-120 m for neutrino astronomy / 20 m for oscillation research

KM3NeT development

Phase	Blocks/ strings	Primary deliverables / site(s)	Funding Construction
1	0.2/31	Proof of feasibility and first science results; KM3NeT-Fr + KM3NeT-It sites	Fully funded 2015-17
2.0	2/230	Measurement of neutrino signal reported by IceCube; All-flavor neutrino astronomy; KM3NeT-It site	Applications pending 2017-2020
	1/115	Neutrino mass hierarchy; KM3NeT-Fr site	
3	6+1/805	Neutrino astronomy including Galactic sources; Multiple sites	t.b.d. ?

KM3NeT Phase-1 = 31 DUs

Vertical OM distance = 36 m 3 times ANTARES

ORCA =
Oscillation
Research with
Cosmics in the
Abyss

Vertical OM distance = 9 m

KM3NeT 2.0 = ARCA and ORCA

Results from prototypes and first string

DOM prototype (PPM-DOM)

Concentration of ⁴⁰K is stable (coincidence rate ~5 Hz on adjacent PMTs)

PPM-DOM: Atmospheric Muons

>5 coincidences within 20ns ⇒ reduced K40 contribution, dominated by atmospheric muons

More upper PMTs in multi-hit events ⇒ directional information from single storey

DU prototype (PPM-DU): 3 DOMs

PPM-DU: Intra-DOM timing

⁻⁶ 0 5 10 15 20 25 30 PMT number

VHEPA2016: KM3NeT (U. Katz)

31 PMTs in DOM using coincidences.

Note: Extremely stable over many runs

22

PPM-DU: Inter-DOM timing

- Calibration with pulsed LED
- Time difference light travel time = Signal travel time
- Result very stable over several months, RMS of jitter < 1 ns

PPM-DU: Muon reconstruction

- Ambiguities can be reduced by cuts on time differences
- 7° FWHM resolution achieved

First string deployed on 3 Dec 2015

- Smooth operation
- All 18 DOMs alive and functional
- First muons reconstructed within hours after switch-on
- Data taking in progress
- Breaking news: Very first neutrino candidate on 5 Jan 2016

Neutrino astronomy: Selected sensitivity studies

Muon angular reconstruction

• Reconstruction using new PMT response simulation: Median of angle $\Delta\Omega$ between reconstructed μ and true ν direction

Shower reconstruction: Method

- Vertex fit: Suitable hit selection, fit uses timing; result used for containment requirement
- Direction and energy: Uses PDF depending on
 - Distance vertex DOM
 - Angle between shower direction and DOM
 - Orientation of PMTs
- Hit information used: yes/no

Shower reconstruction: θ, E

- For contained v_e CC events
- Event sample after selection cuts
- ~10% in E, better than 2° in direction
- Systematic effects very small

Analysis scheme

- All analyses proceed through 4 consecutive steps:
 - 1. Preselection (e.g. quality cuts or cuts on reconstructed zenith or N_{hit})
 - 2. Further background rejection by Boosted Decision Tree
 - 3. 'Cut-and-count' significance analysis
 - 4. Maximum-likelihood analysis using likelihood ratio

$$LR = \sum_{k=1}^{n} \log \frac{\frac{n_{\text{sig}}}{n} \cdot P_{\text{sig}}(X_k) + \left(1 - \frac{n_{\text{sig}}}{n}\right) \cdot P_{\text{back}}(X_k)}{P_{\text{back}}(X_k)}$$

Significance determined by generating pseudo-experiments

Note: All detector information is in the probability density functions P(X), where the event variables X depend on the type of analysis.

- Main results:
 - → Event samples with high signal content from step (3)
 - → Optimised sensitivities from step (4)

Diffuse extragalactic neutrino flux

Assumptions:

- 1. Flavour-symmetric
- 2. Isotropic
- Energy spectrum consistent with IceCube findings

$$\Phi(E_{\nu}) = 1.2 \times 10^{-8} \cdot \left(\frac{E_{\nu}}{\text{GeV}}\right)^{-2} \cdot \exp\left(-\frac{E_{\nu}}{3 \, \text{PeV}}\right) \ \text{GeV}^{-1} \, \text{cm}^{-2} \, \text{s}^{-1} \, \text{sr}^{-1}$$

$$\Phi(E_{\nu}) = 4.11 \times 10^{-6} \cdot \left(\frac{E_{\nu}}{\text{GeV}}\right)^{-2.46} \cdot \exp\left(-\frac{E_{\nu}}{3 \,\text{PeV}}\right) \, \text{GeV}^{-1} \, \text{cm}^{-2} \, \text{s}^{-1} \, \text{sr}^{-1}$$

Signal/background separation

Diffuse flux results (max. liklihood)

Event numbers (cut&count):

16/9 cascades 7.5/5 track-like (signal/background per ARCA year)

Note:

For each energy, direction and flavour, KM3NeT is complementary to IceCube

VHEPA2016: KM3NeT (U. Katz)

Diffuse flux from galactic plane

- New model by D. Gaggero at al. (spatially dependent diffusion coefficient in galactic centre/plane)
- Neutrino flux prediction for central part of Galaxy (longitude |I| < 30° and latitude |b| > 4°):

$$\frac{d\phi}{dE_{\nu}} = 5 \times 10^{-6} \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{-2.3} \cdot \exp\left(-\sqrt{\frac{E_{\nu}}{1 \text{ PeV}}}\right) \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

per flavour (small region but much higher flux than extragalactic)

- Region very well visible for KM3NeT for up-going events
 - → First analysis in muon channel

Galactic plane: First results

- Discovery in 4-5 years
- Inclusion of cascade channel will improve this result
- Confirmation of this flux: major breakthrough in astrophysics

Point-source results

KM3NeT/ARCA (2 building blocks), 3 observation years

IceCube (IC86+IC79+IC59+IC40), 4 observation years

Astrophysical Journal 796 (2014) 109

Galactic sources in reach

Discovery potential (5₀):

VelaX

Vatm conventional uncertainty

RXJ1713.7-3946

Vatm conventional uncertainty

Observation time [years]

Significant discovery

potential for extragalactic

Antares upper limits (1338 days)
Apj L5 (2014) 786

10⁻⁸
10⁻¹

sources

Point-source search with cascades

- Results are "rather preliminary"
- Important:
 Provides
 cascade event
 sample for
 source
 candidates
- Closes visibility gap

... concluding

Summary and outlook

- The KM3NeT neutrino telescope has entered its first construction phase
- Results from prototypes and first string very encouraging
- ARCA & ORCA to follow in 2016-20, sensitivity complementary to IceCube
- Priority science goals:
 - All-flavour neutrino astronomy
 - Measurement of the neutrino mass hierarchy

Stay tuned!