

Mānoa

PHYS476 Electronics for Physicist

RFpix1 Feasibility Study, part 2

Authors: Peter Orel, Pardis Niknejadi Mentor: prof. Dr. Gary S. Varner

08-May-15

UHM, Honolulu, Hawaii

CONTENT:

- Performance evaluation of the PSEC4 single cell
- Summary of the results and comparison with the requirements

Structure & Layout, part 2

Structure & Layout, part 2

08-May-15

Side view

Structure & Layout, part 3

- Check Csampling capacitance •
- Identify Ron and Roff

Sampling Capacitor

Montecarlo with process variation and mismatches shows a discrepancy between Csampling Schematic (13.5 fF) and Measured mean (20.27 fF).

The Spread is about 1.9fF which makes the Capacitor tolerance at about 9.3%

Num. of Samp.	MEAN	STD	MIN	MAX
1000	20.27 fF	1.89 fF	14.86 fF	26.24 fF

08-May-15

UHM, Honolulu, Hawaii

Switch resistance

The PFET and NFET are not matched and Ron varies considerably •

Performance: S(Z)-parameter

UHM, Honolulu, Hawaii

The input impedance is high

Transfer function & Parasitic Capacitances

The transfer function parts:

- input parasitic capacitance of the transistor plus ۲ capacitance of the transmission line section.
- Series resistance of the transistor channel (Rds) ۲
- Output capacitance which is formed of the parasitic ulletcapacitance of the transistor, sampling capacitor and load capacitance

Csw out Csamp

Cload

ce	Value [fF]
	8fF
	10fF
	20.3fF
	13fF

Performance: Small Signal Frequency response, part1

BWworst≈2.3GHz @665mVdc @LowZ drive •

Isolation is over 60dB over all range •

BWworst≈1.7GHz @665mVdc @50Ω drive ${}^{\bullet}$

Performance: Small Signal Frequency response, part 2

High Group delay variation which points to high distortion •

Performance: Large Signal response, part 1

Full dynamic range at low frequency, • compression appears when reaching the voltage threshold of the PN junctions at the drain/substrate barrier.

Gain compression at lower and higher • amplitudes

UHM, Honolulu, Hawaii

08-May-15

High frequency gain compression

Performance: Large Signal response, part 2

High frequency gain compression & distortion

08-May-15

UHM, Honolulu, Hawaii

Performance: Large Signal response, part 3

Low distortion & High compression

Performance: Large Signal response, part 3

08-May-15

UHM, Honolulu, Hawaii

Performance: Large Signal response, part 4

- Constructive interference of odd harmonics and • destructive interference of even harmonics at the peaks
- Constructive interference of second and third • harmonic at zero crossing

08-May-15

UHM, Honolulu, Hawaii

Frequency domain decomposition

Performance: Noise & Distortion, part 1

Noise dominated by the ON resistance of the ٠ channel

Total noise is around 0.29mV ± 0.01 mV •

Performance: Noise & Distortion, part 2

08-May-15

UHM, Honolulu, Hawaii

Performance: Noise & Distortion, part 3

Most of the distortion comes from the Ron variation over the input voltage range •

Performance: SINAD & ENOB

08-May-15

UHM, Honolulu, Hawaii

Performance: Transient response

0.11ns

Worst case window time is 0.8ns or 1.25GHz -> due to • low bandwidth

0.52ns

Best case is 0.25ns or 4GHz •

08-May-15

900mV

Transient response at 300Vdc

Pedestal error due to charge injection and transistor mismatch dominate

Summary

Comparison with requirements

Parameter	Measured (worst cases)	Requirement
Speed (sampling frequency)	1.25GHz (No overlapping)	20GHz
Bandwidth (Single cell)	1.7GHz @665Vdc @50Ω	3GHz
Bandwidth (Multi cell)	1.0GHz @665Vdc @50Ω	3GHz
SNR	61.7 dB	58dB
ENOB	9.8 bits (very small region)	9.4 bits

Things to improve:

- Reduce Ron variance over the dynamic range to reduce distortion and increase the ENOB
- **Bandwidth dominated by Cin:** •
 - **Reduce Cin or reshape the channel to increase the bandwidth (first pole)** ٠
 - **Reduce Ron overall value to increase the bandwidth (second pole)**
- Speed dominated by bandwidth:
 - Increase bandwidth
 - Overlapping of sampling cell windows to increase the effective sampling frequency
- Use differential configuration to reduce pedestal error and increase noise coupling and crosstalk immunity

