BEAST TPC production & testing strategy

Igal Jaegle

University of Hawai'i at Mānoa

BEAST production / purchasing Meeting, 21.01.2015

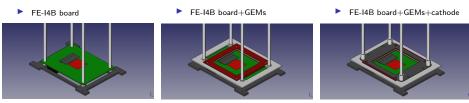
Table of contents

- 1 Construction and LAB. testing schedule
- Readout region
- Field cage
- Prototype 1 purchases

Construction and LAB. testing schedule

Part/Month	January	February	March	April	May
Vessel/End- plate	design	design/manuf.	manuf.	vac. test	
FE-I4B	discussion	order/populate/plate	populate/plate/mount	mount/bridge	glue/scans/cal.
FC	discussion	order/spacers	spacers/mount/glue	mount/linear	sparking/shielding
Plates & wires	design	design/order	plates	plates	plates
Circuits	test	test	test	order	circuits
Assembly					

Testing will be done with a single TPC or in each TPC (depending of pressure vessel arrival), a 3^{rd} work bench and gas system are required.

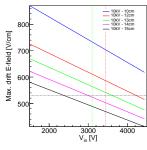

- Assembly prior of LAB. testing to avoid un-necessary GEM exposure to air
- Storage places, in each vessels ? Vessels store in dark room
- Assuming all TPCs will be produced at once and arrived in May
- Assembly + testing: 2 weeks per TPC i.e. 14 weeks for all 7 TPCs

Part/Month	June	July	August
Vessel+Endplate	vac. test	vac. test	vac. test
"inside"-TPC	testing	testing	testing
Assembly	TPC	TPC	TPC

Readout region

For the readout region, we should agree on:

- Transfer gap size 2.8mm between GEM foils
- Collection gap size 3.4mm between chip and bottom GEM foil => dictate wire bond bridge design
- GEMs attached to a Delrin plate spacer by 4 Al screws, bolts and washers
- 0.6 mm between top GEM foil and cathode



Field cage

To start the purchases, we should agree this week on:

- Drift length
 - With FC support plates each 5cm from each sides: we have 20cm, standard rods of 25cm
 - At 11kV, sparks start to occure
 - HV supply 10 kV (?)
- Spacing between each rings 1cm (Kurtis will produce some to test CNC machinery)
- Ring + cathode designs (bear machinary), minor change on the ring and cathode: add holes
- Mesh (e-fab)

- Al screws, bolts, washers
- Resistance of 100 $M\Omega$ with 0.1% tolerance
 - $\sim 1/15$ for 1% tolerance i.e. 1440
 - $\sim 1/60$ for 5% tolerance i.e. 5670

Prototype 1 purchases

- Gas system
 - Gas
 - Tubing
 - Mechanical valves
 - String valves
 - Pressure gauge
 - Flow regulator
- HV cabling (RG58 cables $20 \times 1m + 2 \times 6(?)m$) ($\sim 2000)
- Feedthrough STT Grounded Shield Recessed 5kV 10 Amp 0.094 Nickel Conductor 4 each in a KF40 Flange Without Plug
- ullet Kapton for shielding (\sim \$1000)
- Boxes + resistances