The Cold Spot on the Cosmic Microwave Background

István Szapudi¹, András Kovács^{1,2,3}, Ben Granett⁴, Zsolt Frei^{2,3}, Joe Silk⁵, & PS1 Collaboration

¹Institute for Astronomy, University of Hawaii
²Eötvös University, Budapest
³MTA-ELTE EIRSA, Lendület Research Group
⁴INAF OA, Brera
⁵Johns Hopkins University

2 Data Sets and Measurements

I. Szapudi The Cold Spot Supervoid

・ 同 ト ・ ヨ ト ・ ヨ ト

From Big Bang to Present

From COBE To Planck

Increasing Resolution

Background

Data Sets and Measurements Results

Frequency Coverage

Results

Power Spectrum

I. Szapudi

Anomalies in Planck

Anomalies

- Discovered in WMAP and confirmed by Planck
- 2-3 σ deviations from isotropic Gaussian statistics from LCDM
- explanation ranges from exotic physics (textures) to statistical fluke
- Cold Spot 0.5% unlikely (Cruz etal 2006): one of the most significant
- Zhang & Huterer (2009): skeptical view
- $\Delta T \simeq -70 \ \mu K$
- extends at least 5°, and up to 15° on the CMB
- Inoue & Silk (2007): 200 $h^{-1}Mpc$ void with $\delta = -0.3$ via ISW

・ 同 ト ・ ヨ ト ・ ヨ ト …

Integrated Sachs-Wolf Effect

 Photons passing through changing gravitational potentials are becoming slightly hotter or colder

$$\Delta T_{\rm ISW} \simeq \int d au rac{d\Phi}{d au},$$

where

$$\frac{d\Phi(\mathbf{x})}{d\tau} = \frac{\Phi(\mathbf{x})}{(1+z)}\frac{d}{d\tau}\left[(1+z)D_1(z)\right]$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

The Integrated Sachs-Wolfe effect

Linear ISW as a Signature of DE

- In a flat, matter dominated universe $D_1 = 1/(1 + z)$,
- There is a linear effect if $\Omega_M \neq 1$, e.g., ΛCDM
- If the universe is flat (e.g., from CMB), linear ISW effect signals Dark Energy
- Caviat: there can be a non-linear effect as well

Cold Spot in WMAP Vielva Etal 2004, Cruz etal 2005

Fig. 12.—In the left panel, the SMHW coefficients at $R_8 = 250'0$ outside the exclusion mask $M(R_8)$ are presented. In the right panel, only those coefficients above 3 $\sigma(R_8)$ are plotted. If these coefficients are not considered, the kurtosis of the remaining ones is completely compatible with the Gaussian model. The coldest spot (shown in black) at $b = -57^\circ$, $l = 209^\circ$ has a minimum value equal to $-4.57 \sigma(R_8)$. The simulations indicate that the probability of this value is $\approx 1\%$. [See the electronic edition of the Journal for a color version of this figure.]

I. Szapudi The Cold Spot Supervoid

イロト イヨト イヨト イ

Cold Spot WMAP 9-year data

WMAP9 ILC

PLANCK SMICA

Void in the NVSS near the Cold Spot Rudnick Etal 2007

Fig. 1.—50° field from smoothed NVSS at 3.4° resolution, centered at $l = 209^{\circ}$, $b = -57^{\circ}$. Values range from 9.3 mJy beam⁻¹ (*black*) to 21.5 mJy beam⁻¹ (*white*). A 10° diameter circle indicates the position and size of the *WMAP* cold spot.

I. Szapudi The Cold Spot Supervoid

イロト 不得 とくほ とくほとう

ъ

Superstructures from SDSS LRGs

Granett Etal 2009 Superstructures from SDSS LRGs

- superstructures imprint on the CMB
- strong statistical evidence 4.4σ
- ISW is plausible, although $\simeq 10 \mu K$ higher than expected

Cai etal 2013

Supersvoids from SDSS spectroscopic survey $\simeq 3\sigma$, again higher then simulation

Background

Data Sets and Measurements Results

Granett etal (2010) Imaging survey

I. Szapudi The Cold Spot Supervoid

Density Maps in Redshift

The Cold Spot Supervoid

Constraints

Background

Data Sets and Measurements Results

Bremer etal (2010) redshift survey

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Search Summary

- Bremer etal found no evidence of a void at 0.35 < z < 1
- Granett etal could exclude $\gtrsim 100h^{-1}Mpc$ void for 0.5 < z < 1
- no evidence for 0.3 < *z* < 0.5
- data consistent with a void at z < 0.3 with low significance
- both surveys ran out of volume at low z
- wide area shallow survey need to test for the presence of a large void at z < 0.3
- Francis & Peacock (2010) found an under-density in 2MASS corresponding to up to 7μKsignal

・ 同 ト ・ ヨ ト ・ ヨ ト

The WISE-2MASS catalog

- matched the WISE and 2MASS catalogs (Kovacs & Szapudi 2014)
- $W1 \le 15.2$ and $J \le 16.5$
- clean star galaxy separation
- \leq 2% stellar contamination
- removes artifacts present in WISE alone
- 2.5 million objects
- significantly deeper than 2MASS $z_{med} \simeq 0.14$
- galactic cut of 20° and $E(B V) \ge 0.1$ (Schlegel et al 2011) mask
- 21,200 square degrees

イロト イポト イヨト イヨト 一臣

Photometric Redshifts SVM classification

PS1 matching

- Cold Spot center $(I, b) \simeq (209^\circ, -57^\circ)$
- matching a 50° \times 50° with Pan-STARRS1 around it
- Dec $\geq -28^{\circ}$ due to PS1 mask
- 73,100 objects with matching rate 86% in 1500 square degrees
- Kron and PSF magnitudes g, r, i
- photo-z's with SVM
- GAMA matching (96%) for teaching and control set
- $\sigma_z = 0.034$

イロト イポト イヨト イヨト

э.

Photometric Redshifts SVM classification

< 🗇 >

→ E > < E</p>

Coldspot Area in WISE-2MASS

Planck SMICA

(209,-57)

ヘロト ヘワト ヘビト ヘビト

э

WISE-2MASS galaxies

-170

1200×1200 pix

3 '/pix,

Radial Profile Density

Ξ.

Radial Profile Significance

2D results

- We decided in advance to test for 5° and 15° radii based on literature of the Cold Spot
- S/N is 12 in rings, and 13, and 23 for disks, respectively
- Though under density detected at 5σ to 20° in rings
- The disk is under dense up to 50°
- The presence of the under density is firmly established in WISE-2MASS
- Next we produce counts in photo-z bins at the two fiducial radii

Redshift Profile Szapudi etal + PS1 (2014)

Galaxy bias

- Simple model $\delta_g = b \delta_m$
- Best fit *b* = 1.41 ± 0.07

프 🕨 🗉 프

Redshift Profile Szapudi etal + PS1 (2014)

3D Results

- S/N is 5 and 6σ , respectively
- From power spectrum $b = 1.41 \pm 0.07 \rightarrow \delta_m = 0.14 \pm 0.04$
- with $R = 220 \pm 50 h^{-1} Mpc \ z_{void} = 0.22 \pm 0.03$
- $3.3 + \sigma$ void in LCDM
- *H*₁: two random structures with random alignment: probability *p_{CS} × p_{void} × p_{align}*
- H₂: supervoid causing the CS: probability p_{void}
- ratio $p_{CS} \times p_{align} \simeq 1:200,000$
- linear ISW from this void up to $\simeq 20 40 \mu K$
- caveats: toy model and uncertainties in parameters, and non-linearities

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Tomography

I. Szapudi The Cold Spot Supervoid

< 注→

Tomography

I. Szapudi The Cold Spot Supervoid

< 注→

Tomography

I. Szapudi The Cold Spot Supervoid

< 注→

Tomography

I. Szapudi The Cold Spot Supervoid

< 注→

Summary

- A supervoid was detected in both WISE-2MASS and WISE-2MASS-PS1 in counts centered on the Cold Spot
- In 2D: $\delta_g \lesssim$ 0.2, $r \simeq 20^\circ$
- 3D toy model: $R = 220 \pm 50 h^{-1} Mpc$, $\delta_m = -0.14 \pm 0.04$, and $z_{void} = 0.22 \pm 0.03$
- A rare but not impossible void, at least 3.3σ in LCDM
- Chance alignment unlikely
- linear ISW up to $\simeq 20 40 \mu K$, but could be larger when non-linearities and uncertainties are taken into account
- most previous ISW measurements are a factor of 2 4 higher than theory
- Possibly the first anomaly with plausible explanation
- A rare event but not on the CMB

・ 同 ト ・ ヨ ト ・ ヨ ト