

Physics Colloquium Univ. of Hawaii Oct. 16, 2014

Our Universe

Seon-Hee Seo, SNU

Physics Colloquium @ U. Hawaii

Standard Model

Standard Model (SM)

- Our visible universe is well described by SM.
- All particles in SM
 were discovered.
 (Higgs in 2012, finally..)

Total 37/114 Nobel Phys. Prizes in particle physics.

(1901-2014)

The END ?

Why Neutrinos Matter ?

Neutrinos are fundamental particles but still remain mysterious !!

We would not exist without neutrinos. ex) Nuclear fusion process in the Sun.

Neutrino 101

□ Neutrino is the 2nd abundant particle after photon.

 \Box Neutrino is more than 1,000,000 times lighter than e^{-} .

Neutrino can travel close to the speed of light.

Neutrino does not have a charge.

Neutrino almost does not interact.

Big Bang v : 1/3 billion/m³, Cosmic v Background: 1.95 K

Oldest neutrino in our universe (CvB)

Supernova (SN) neutrinos

- -- supernova: explosion at the end stage of a star's life.
- -- all flavors of v and \overline{v} are produced from core collapsing SN. (99% energy of the collapse is carried away by these v).
- -- A total of 10⁵⁸ ν production is expected.

Seon-Hee Seo, SNU

Solar neutrinos:

- -- Electron neutrinos from solar nuclear fusion
- -- 65 billion solar neutrinos per cm² per sec (Day & Night)

Seon-Hee Seo, SNU

Physics Colloquium @ U. Hawaii

The Sun

 > 12 years of exposure by huge v telescope (Super-K: 1-4)

 Actual Sun corresponds to 1/2 pixel in the center of the picture.

Sun image seen through neutrinos detected by Super-K experiment

Electron anti-neutrinos from ²³⁸U, ²³²Th, & ⁴⁰K inside Earth interior.

-- Will reveal the mechanism inside the Earth interior.

-- 1 million & 10 million per cm² per sec (model dependent).

Reactor neutrinos

- -- Electron anti-neutrinos from ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fission
- -- 2 x 10²⁰ /sec per GW_{th} (typically 2.5 GW_{th} per commercial reactor core)

Accelerator neutrinos

- -- typically muon neutrino production.
- -- neutrino rate depends on beam intensity.

Conventional v:

$$p + p \rightarrow \pi^{-} / \pi^{+} \rightarrow \mu \nu_{\mu} \rightarrow (e) \nu_{e} \nu_{\mu} \nu_{\mu}$$

 $\nu_{e} : \nu_{\mu} : \nu_{\tau} = 1 : 2 : 0$

Atmospheric neutrinos

- -- muon neutrinos, electron neutrinos are produced from cosmic ray interactions in the atmosphere.
- -- O(100) atm. v per cm² per second @ 10 MeV (energy dependent)

Astrophysical neutrinos

- muon neutrinos, electron neutrinos are produced from pp or pγ interactions at/near the source.
- -- All three flavors arrive in the Earth !
- -- Smallest population among other origin of neutrinos.
- -- IceCube claimed first observation of these neutrinos in 2012.

ullet

Astrophysical Neutrinos ?!

PRL 111 (2013) 021103

 $1 \text{ PeV} = 10^{15} \text{ eV}$

5.7 σ with <u>additional 35 candidate</u> events. <u>Results submitted to PRL (May, 2014)</u>

Astrophysical neutrino search

Me @ South Pole

Astrophysical neutrino search

Neutrino Flux & Energy Ranges

Neutrinos: Ghost Particles

Neutrinos pass through:

- → about 1 light year thickness of lead is needed to stop half of neutrinos.
- \rightarrow Hard to detect. No worry for neutrino irradiation.

<u>1930 Pauli</u> postulated neutrino
to explain beta decay problem
(3 body kinematics but only 2 particles seen)

<u>1933 Fermi</u> baptized neutrino In his weak interaction theory

<u>1957 Pontecorvo</u> suggested Neutrino mass and oscillation

Physics Colloquium @ U. Hawaii

5 pytho TTOHMEROPhen

First discovery of neutrinos in 1956 ! → Nobel Prize in 1995 to Reines & Cowan

Using reactor neutrinos @ Savannah River, S. Carolina

Muon neutrinos discovery in 1962 in BNL \rightarrow Nobel Prize in 1988.

Lederman

Schwartz

Steinberger

Tau neutrino discovery in 2000 in Fermilab (DONUT)

DONUT = Direct Observation of NU Tau

Beam damp Shielding p D₅ τ v_{τ} \overline{v}_{τ} \overline{v}_{τ} \overline{v}_{τ}

Not this one

Observed 4 v_{τ} events

3 flavors of v in SM

Neutrino are generated or detected In flavor eigen-state.

3 flavors of v in SM

Neutrino are generated or detected In flavor eigen-state.

3 mass eigen-state of $\boldsymbol{\nu}$

When neutrinos travel, they exist as mass eigen-state.

Neutrino Oscillation

Fractional v components

Why θ_{13} ?

- \checkmark To complete 3 v mixing angle matrix (PMNS).
- ✓ To open a window for leptonic CP phase measurement LBNO, LBNE, Hyper-K (θ_{13} != 0)

 $\mathsf{P}(\nu_{\mu} \rightarrow \nu_{e}) - \mathsf{P}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \propto sin2\theta_{12}sin2\theta_{23}sin2\theta_{13}cos\theta_{13}sin\delta$

- ✓ To allow neutrino mass hierarchy measurement (← requires not too small θ_{13})
- To allow precise measurement of atm. neutrino oscillation parameters

Reactor θ_{13} **Experiments**

RENO at Yonggwang, Korea

θ₁₃ Reactor Neutrino Detectors

Comparisons

RENO was the 1st exp to take data using both near & far detectors ! in June, 2011.

How to measure θ_{13} ?

□ Find disappearance of v_e fluxes due to neutrino oscillation as a function of energy using multiple, identical detectors to reduce the systematic errors in 1% level.

Seon-Hee Seo, SNU

Reactor **E**xperiment for **N**eutrino **O**scillation

Lots of neutrinos: $3 \times 10^{21} \overline{v_e}$ (per second)

RENO Collaboration -- 12 Korean institutions -- 40 physicists

Seon-Hee Seo, SNU

RENO Collaboration

<u>11</u> institutions and **<u>40</u>** physicists in Korea

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- GIST
- Gyeongsang National University
- Kyungpook National University
- Sejong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

Total cost : \$10M

- Start of project : 2006
- The first experiment running with both near & far detectors since Aug. 2011

Reactor Experiment for Neutrino Oscillation

RENO Location: YongGwang S. Korea

YongGwang (靈光): means "Glorious light"

~ 4 hours driving distance from Seoul

RENO Experimental Setup

The RENO Detector

The RENO Detector

Detection Principle of Reactor Neutrinos

Prompt signal (e⁺) : 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)

 Delayed signal (n): 8 MeV γ's from neutron's capture by Gd or H ~30 μs or ~200 μs

Signal: IBD Pair

Backgrounds

- Accidental coincidence between prompt and delayed signals
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)
- $^{9}Li/^{8}He \beta$ -n followers produced by cosmic muon spallation

RENO Status

Observed Daily Neutrino Rate

Observed points have very good agreement with prediction.
It's the accurate v flux (or thermal power) measurement.

Measured Spectra of IBD Prompt Signal

θ_{13} Measurement by RENO

$sin^{2}(2\theta_{13}) = 0.101 \pm 0.008 \text{ (stat.)} \pm 0.010 \text{ (sys.)}$

New θ_{13} Measurement by Rate-only Analysis

Preliminary result

C data set (~800 days)

 $sin^{2}(2\theta_{13}) = 0.101 \pm 0.008 (stat.) \pm 0.010 (sys.)$

Neutrino 2014

History of RENO measurements:

 $\sin^2 2\theta_{13} = 0.113 \pm 0.023$ 4.9 σ (Neutrino 2012)

 $\rightarrow 0.100 \pm 0.016$ 6.3 σ (TAUP/WIN 2013)

→ 0.101 +/- 0.013 7.8 σ (Neutrino 2014)

Reactor Neutrino Disappearance on L/E

The 5 MeV Excess was observed !

I will talk about RENO's 5 MeV Excess.

Observation of a New Reactor Neutrino Component at 5 MeV in RENO

Fraction of 5 MeV excess (%) to expected flux [2011 Huber+Mueller]

- Near : 2.18 ± 0.40 (experimental) ± 0.49 (expected shape error)
- Far : 1.78 ± 0.71 (experimental) ± 0.49 (expected shape error)

Correlation of 5 MeV Excess with Reactor Power

Correlation of 5 MeV Excess with Reactor Power

RENO: Shape Analysis for Δm_{ee}^2

In progress.... Stay tuned...

n-H Analysis

Motivation:

- 1. Independent measurement of θ_{13} value.
- 2. Consistency and systematic check on reactor neutrinos.

Features of n-H Events

n-H Analysis: RENO

Very preliminary (~400 days) **Rate-only result**

 $\sin^2 2\theta_{13} = 0.103 \pm 0.014 (\text{stat.}) \pm 0.014 (\text{syst.})$

(Neutrino 2014) $\sin^2 2\theta_{13} = 0.095 \pm 0.015 (\text{stat.}) \pm 0.025 (\text{syst.})$

← Removed a soft neutron background and reduced the uncertainty of the accidental background

preliminary

A Brief History of θ_{13} from Reactor Experiments

Future Prospects on θ_{13}

RENO

5 years of data : 7 %
 stat. error : ±0.008 → ±0.005
 sys. error : ±0.010 → ±0.005

Daya Bay

2017 (6 years of data) : 3 %

δ(sin²θ₁₃)~0.003, δ(Δm²_{ee})~0.07

Future Prospects on θ_{13}

Double Chooz

3 years of Far & Near data : 15 -10 %

after θ_{13} measurement

Why θ_{13} ?

- \checkmark To complete 3 v mixing angle matrix (PMNS).
- ✓ To open a window for leptonic \vec{P} phase measurement LBNO, LBNE, Hyper-K $(\theta_{13} != 0)$

 $\mathsf{P}(\nu_{\mu} \rightarrow \nu_{e}) - \mathsf{P}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \propto sin2\theta_{12}sin2\theta_{23}sin2\theta_{13}cos\theta_{13}sin\delta$

- ✓ To allow neutrino mass hierarchy measurement (← requires not too small θ_{13})
- To allow precise measurement of atm. neutrino oscillation parameters

Q1. What are the mass ordering of the three neutrinos ?

Reactor Neutrino Oscillations

$$P(v_e \rightarrow v_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{1.27\Delta m_{12}^2 L}{E_v}\right) - \sin^2 2\theta_{13} \sin^2 \left(\frac{1.27\Delta m_{13}^2 L}{E_v}\right)$$

Seon-Hee Seo, SNU

Reactor Neutrino Spectrum @ 50 km

$$P_{R}(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \begin{cases} \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta_{21} + \sin^{2}2\theta_{13}\sin^{2}\Delta_{31} \\ +\sin^{2}2\theta_{13}\sin^{2}\theta_{12}\left(\cos 2\Delta_{31}\sin^{2}\Delta_{21} - \frac{1}{2}\sin 2\Delta_{31}\sin 2\Delta_{21}\right) \end{cases} \quad \Delta_{ij} = \frac{1.27 \cdot \Delta m_{ij}^{2}L}{E_{v}}$$

Energy Resolution for Mass Hierarchy

Challenge: high-precision, giant LS detector

	KamLAND	JUNO	RENO-50
LS mass	~1 kt	20 kt	18 kt
Energy Resolution	6%/	~3%/	~3%/
Light yield	250 p.e./MeV	1200 p.e./MeV	>1000 p.e./MeV

72

◆ RENO can be used as near detector for RENO-50.
→ Reduces systematic error of nu flux.

While JUNO can not use Daya Bay detector as near detector. \rightarrow To reduce neutrino interference effect from other reactors.

Scientific Potential of JUNO/RENO-50

- Resolve the mass hierarchy
 - ~4 standard-deviation discrimination in 6 years
- Precision determination of neutrino-mixing parameters

	Current fractional precision	JUNO/ RENO-50
$sin^22\theta_{12}$	5%	0.7%
s in ² 20 ₂₃	5%	NA
$sin^22\theta_{13}$	10%	~15%
Δm^2_{21}	3%	0.6%
Δm^2_{31}	5%	0.6%

- Search for supernova neutrinos
 - ~5000 events for supernovae occur at 8 kpc
- Study geo-neutrinos
 - ~1000 events in a 5-year run

@Recontre du Vietnam 2013

Fresh Good News

\$ 2 M grant from Samsung was awarded for RENO-50 R&D.

This grant will be used for R&D of

 $\bigcirc 1$ Liquid scintillator purification.

2 High QE PMT performance to reach 3% resolution.

→ RENO-50 needs your collaboration !

Hano Hano

Hawaiian antineutrino observatory

Very clever idea !

More Big Questions

Q2. Why our universe is dominated by matter ?

Q3. Are there more than three types of neutrinos?

Q4. Are neutrinos their own anti-particles ?

Q5. What are the absolute masses of neutrinos ?

Q6. What gives the mass to the neutrinos?

