
Introduction to Hardware
Description Languages - VHDL

Luca Macchiarulo

1

HDL

 Hardware Description Languages extensively used for:

 Describing (digital) hardware (formal documentation)

 Simulating it

 Verifying it

 Synthesizing it (first step of modern design flow)

 2 main options:

 VHDL

 Verilog

 “Future” or advanced options:

 SystemC (for complex systems – C-like syntax)

 SystemVerilog (as SystemC with Verilog-like syntax)

 VHDL-AMS (Analog-Mixed Signal structure to simulate analog
continuous time systems)

2

VHDL

 VHSIC HDL (=Very High Speed Integrated Circuit
HDL)

 originally DoD project (explains why syntax so close to
ADA)

 IEEE standardized since 1987

 Most important standardization: 1993

 currently IEEE2008 (after other 2 minor revisions)

 Most tools support 1993 – minor differences for synthesis

 Commonly used in academia in Europe, 50 % in US,
not so much in Japan

 Full standard very complex – synthesizable version
quite minimal (and de facto very similar to Verilog)

3

Verilog

 Originally company proprietary (Gateway
Design Automation then bought by Cadence)

 IEEE standard from 1995

 Further revisions 2001/2005 then systemVerilog
2009

 Originally simpler than VHDL, and much closer
to common syntax (C-like) – adequate for
syntesis

 Historically popular in Japan, and a little over
50% in US

4

Which one to choose?

 Individual preference – frankly mostly historical
(first language learned...)

 But important to have an idea of both

 I personally write VHDL from scratch, but need to
use/ modify Verilog code from others

 Tools today (almost) seamlessly work with both
(careful with interface/naming), so no need to
rewrite

 After this week you might have your favorite

5

More information
 Countless monographs on either of them

 Chu – FPGA prototyping by VHDL examples Xilinx Spartan-3 version
(ebook at UH library)

 Same as above for Verilog

 Ashenden – Designer's Guide to VHDL (and also the old but free
VHDL Cookbook)

 Sadeo - The complete Verilog book (ebook at UH library)

 Good Internet coverage

 VHDL: old but good VHDL FAQ at the University of Hamburg

 Verilog: http://www.asic-world.com/verilog/index.html

 Xilinx documentation:

 Simulation and synthesis guide (chapters 4 and 5 is all about HDLs):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/si
m.pdf

6

http://www.asic-world.com/verilog/index.html
http://www.asic-world.com/verilog/index.html
http://www.asic-world.com/verilog/index.html
http://www.asic-world.com/verilog/index.html

Purpose of present week
 Concentrate on synthesizable code

 Write in such a way that synthesizers will understand what to implement

 Have in mind HW rather than an algorithm

 If you think about a classical CS algorithm you almost certainly will not write
synthesizable code and certainly code that is very hard to debug

 Think of multiple object operating in parallel

 Objects will be components (VHDL) or modules (Verilog)

 Use master components (State Machines) to organize their communication

 Check the intended behavior by simulation

 It is helpful using templates that are guaranteed to work

 Useful non-synthesizable features:

 Time behavior (after, wait, #)

 Files

 Integer, real numbers

 Tricky differences with simulations/post synthesis simulations:

 “U” signals

 Sensitivity lists

7

VHDL Core Elements

 VHDL: Entity and Architecture:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity simple is

port(a, b, c : in std_logic;

y : out std_logic);

end simple;

architecture Behavioral of simple is

begin

y<= (a or b) and c;

end Behavioral;

Library and Package declarations:
All useful types and functions –
NEEDS TO PRECEDE EVERY
ENTITY THAT USES IT

Entity declaration –
Contains the interface of the component
– inputs and outputs – and possibly some
passing parameters

Architecture –
Contains the description of how the output
depend on the inputs – there can be multiple
Architecture for the same entity,
but if you just write one the compiler will know
automatically which one to use

8

Another example – 32 bit adder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_arith.ALL;

use IEEE.STD_LOGIC_unsigned.ALL;

entity simple_adder is

port(a, b: in STD_LOGIC_VECTOR(31 downto 0);

 y: out STD_LOGIC_VECTOR(31 downto 0));

end simple_adder;

architecture Behavioral of simple_adder is

begin

y <= a + b;

end Behavioral;

Packages for arithmetic operations on
unsigned numbers

ONLY through them we can write –
note that the result has the same size
as the operands – if you need carry make
sure to extend one of them by one bit

9

Combinational Logic

 In VHDL simple combinational logic (logic that
is not registered or controlled by a clock) can
be expressed by a simple signal assignment
operator <=

 y <= not a;

 Implicitly, all the signal used in the right hand
side expression are used to decide when the
expression is evaluated (technically, they are
in the “sensitivity list” of the assignment)

 From the point of view of synthesis, this means
that the hardware will not contain any FF or
latch

10

Bitwise operators

 The operation can be repeated on all bits in a
std_logic_vector:

y<= not a;

is the same (if y and a are std_logic_vector(2
downto 0)) as

y(0)<= not a(0);

y(1)<= not a(1);

y(2)<= not a(2);

11

Conditional Assignment

 Two ways of assigning out of a choice based
on another signal:

y <= d0 when s = “00” else

 d1 when s = “01” else

 d2 when s = “10” else

 d3;

with s select y <=d0 when s = “00” else

 d1 when “01”,

 d2 when “10”,

 d3 when others;

12

Internal signal

 Normally in a complex architecture you need intermediate
values. They are declared in the architecture before the
keyword begin:

architecture beh of simple

signal p : std_logic;

begin

p<=a or b;

y<=p and c;

end beh;

Note that all the architecture is still combinational – can be
seen as 2 gates connected together – the synthesizer will
try to fit it in the smaller number of logic blocks in the
target technology (for FPGA, LUTs) 13

Expressions and precedence

 Inversion: not

 Multiplicative: * / mod rem

 Additive: + - &

 Rotate and shift: rol, ror, srl, sll, sra, sla

 Comparison: = /= < <= >= >

 Logical: and or nand nor xor

concatenation

No xnor!

14

Numbers

 Integer and real numbers are written normally
(130, 0.12)

 There is no reason to use real numbers but in
testbenches for time expressions – they are most
clearly non-synthesizable

 Integers should be used sparingly, as they can
take a lot of space (typically 32 bits) but they are
ok if used as constants in expressions

 Binary numbers need quotes:

 “10110010”

 X”B2”

 Single bits require single quotes '0', '1'
15

High impedence, uninitialized and
invalid

 std_logic is more complex than bit. Besides '0'
and '1' it has:

 'u' : undefined (at start of simulation before any
assignment)

 'z' : high impedence (to model tristate buffers)

 'x' : invalid (for example when 2 drivers try to force
conflicting values like '0' and '1')

 ...and many more ('H', 'L', 'W', '-')

 Useful in simulation, ignored in synthesis

 But good to know as they explain strange
warnings (not all options covered...)

16

Bit swizzling

 It is easy to break up and build a new vector:

y(5 downto 3) <= a(2 downto 1) & '0';

 The strange “downto” makes sure numeric
vectors are read correctly with constants:

 Y(3 downto 0) <= “1100”; – assigns the (decimal)
number 12 to the 4 Lsbits of Y

17

Delays

 For simulation (but NOT for synthesis) it is
possible to fix the delays in assignments:

 y<=a after 2 ns;

 Z <= b + c after 10 ns;

 Synthesis does not use them at all, and if you
want to set a timing constraint, you need to
follow a different route (see the next days).

18

Structural modelling

 How to describe very complex systems?

 By having a hierarchy of modules, in which one is
used in a higher module

 An entity/architecture pair that is used in a higher
level module is called a component

 The specific match of a component to an
entity/architecture is supposed to be explicit (using
configurations)

 Implicit configurations are possible, if we are lazy,
but the trick is making sure we use the same
name for the component and entity and their
signals as well 19

Example – leaf module

20

Example – hierarchy top

Same as entity !

Assignments of formal => actual argument:
c is a signal in Mux4, a is its name in Mux2

21

Side note – strange/confusing
conventions

• VHDL has some subtle conventions and symbols that
easily cause subtle syntax errors if not correct:

• Semicolons: just before a closed parenthesis (in a port
map, for example), no semicolons:

• port(a, b, c : in std_logic;y : out std_logic);

• Test for equality is = not ==

• Test for inequality is /= not !=

• There are 2 “arrow” signs: <= is used in signal
assignments, => is used for port maps and case
statements (see below)

• If statements ALWAYS require then and end if; - but no
need for parenthesis to bracket the expression

• Alternative if is elsif, not else if nor elseif

• Comments are introduced by – not //

22

Sequential Logic

 Most designs use sequential logic – logic that
has memory of the past, and typically employs
a clock signal to time the computation or data
transfer

 In VHDL this needs to be described using
processes

 The key for the synthesizer to recognize
sequential logic is the fact that the
assignments are not continuous – there are
conditions in which nothing happens now –
see the D-FF of the following page 23

D-FF

Sensitivity list: only when there is
a change in the listed signals
the process is active

This is happening only at the rising edge of clk, all other times q remembers the old value

24

Resettable registers

Asynchronous reset:
It operates independently of clk

25

Synchronizer

IMPORTANT!
The assignments are performed using the
d and n values BEFORE the clock transition
so this introduces an extra clock delay!

26

Counter

This is required as VHDL
does not allow out signals to be read
inside an architecture

27

Latch

Note the sensitivity list

No “rising_edge”

NOTE: Xilinx discourages the use of latches and asynchronous resets – mostly for timing
closure issues, but they are occasionally handy (to record one time flags, for example)

28

Combinational processes

 Processes can be also used to describe
complex combinational logic, not only
sequential:

 The trick is to make sure that ALL possible
changes in the used signals are actually taken into
consideration

 This requires having all “input” signals in the
sensitivity list (if not, the system might work but the
simulation might not match the synthesis)

 And also making sure that all “outputs” are
assigned a value in the process no matter the
value of any signal 29

Example of wrong “combinational”
process

process(a)

begin

if a = “00” then

y <= '0';

elsif a = “01” then

y <=b;

elsif a = “10” then

Y<=b;

end if;

end process;

b missing from sensitivity list

Ooops – what happens if a = “11”?

30

Corrected “combinational” process

process(a,b)

begin

if a = “00” then

y <= '0';

elsif a = “01” then

y <=b;

elsif a = “10” then

y<=b;

else

y <=b;

end if;

end process;

All used signals in sensitivity list

Else guarantees all cases are covered

31

Statements allowed inside a
process

 Variable assignments:

 variables are declared in the declarative part of the
process (not the architecture – they are like local
variables)

 variables can be used as signals in expressions

 variables are assigned using the variable
assignment operator := that has immediate effect
– the result of an assignment can be used in
successive parts of the same process

32

Example of variable use

process(clk)

variable v1,v2: std_logic_vector(7 downto 0);

begin

if rising_edge(clk) then

v1:= a + b;

v2 := c + d;

y<= v1+v2;

end if;

end process;

At every clock cycle, y will be updated
with the current value of a+b+c+d. What would have
Happened if v1 and v2 were signals?

33

Statements allowed inside a
process

 Case statements:

case a is

when “00” => y<='0';

when “01” => y<=b;

when “10” => y<=b;

when others => y<=b;

end case;

34

Statements allowed inside a
process

 Some statements are very useful for
simulation but are meaningless and should not
be used for synthesis:

 Wait for xx ns → used to introduce a finite delay
between one statement and the next – no code
with this will be synthesizable (we'll see it in
testbenches)

 Assert <condition> report “blah blah” severity error

 Useful to check satisfaction of logic constraints

35

Finite State Machines (FSM)

• Finite State Machines are typically key
sequential components for any design –
coordinate action among other components

• Abstractly defined by a number of states and
possible transitions between states, a
transition baing chosen based on current inputs

• Actions (outputs) are assigned to either the
states (Moore machine) or the transitions
(Mealy machine)

• Less abstractly, in Moore machines states
depend only on the current state, in Mealy
machines on state and current inputs.

36

FSM descriptions

 FSM can be described in various ways in VHDL. The
most common ways are trying to mimic the HW
implementation of FSMs:

 2 processes, 1 updating the state at the clock tick, 1
computing the future state and outputs

 3 processes, 1 updating the state at the clock tick, 1
computing the future state, 1 computing the output (can
easily distinguish Moore and Mealy machines).

 A single process, updating a single state signal inside a
clock “if” statement – only for Moore machines

 It typically uses:

 An enumerative type to define the states symbolically

 case statements to distinguish between the current state 37

FSM example – 2 processes

This process needs to be completely combinational
 – next_state needs to be assigned for any possible input

38

Testbenches
 Once a module is written and passes syntax

checks, how do we test it behaves as
expected?

 Simulation of course, but how do we feed the
inputs?

 Building a testbench: a VHDL code that can be
simulated and that provides all appropriate inputs
and relative timing

 A testbench:

 Is an empty entity (no inputs or outputs – and no
port!)

 uses wait constructs to add delays and
synchronize the inputs with clocks

39

Example

Testbench for the FSM

Instance of “Unit Under Test”

Sequence of inputs

No further change from here

40

