
Introduction to Hardware
Description Languages - Verilog

Luca Macchiarulo

1

Verilog Core Element

 Verilog: Module:

module simple(a, b, c ,y);

input a;

input b;

input c;

output y;

assign y = (a | b) & c;

endmodule

Typical bits and bit arrays are
predefined in Verilog – no need for
package inclusoins

Module header –
Contains the interface of the component
– inputs and outputs – and possibly some
passing parameters

Module core–
Contains the description of how the output
depend on the inputs – there can be only
one core per module –
no need for configuration

2

Another example – 32 bit adder

module simple_adder (a, b, y);

input [31:0] a;

input [31:0] b;

output [31:0] y;

assign y = a + b;

endmodule

Basic arithmetic is already included
– no need for packages

3

Verilog 2001 C-style headers

Verilog 2001 introduced the simpler format for
header where input output and size can be
embedded in the module interface

module simple(input a, b, c, output y);

module simple_adder (

input [31:0] a,

input [31:0] b,

output [31:0] y);

4

Combinational Logic

 In verilog simple combinational logic (logic that
is not registered or controlled by a clock) can
be expressed by a simple signal assignment
statement assign … = …;

 assign y = ~a;

 Implicitly, all the signal used in the right hand
side expression are used to decide when the
expression is evaluated (technically, they are
in the “sensitivity list” of the assignment)

 From the point of view of synthesis, this means
that the hardware will not contain any FF or
latch

5

Bitwise operators

 The operation can be repeated on all bits in a
std_logic_vector:

assign y = ~a;

is the same (if y and a are [2:0] arrays) as

y[0] = ~a[0];

y[1] = ~a[1];

y[2] = ~a[2];

• Verilog has also useful reduction operators:

assign x = |a; //where x is a single bit

(equivalent to assign x = a[2] | a[1] | a[0];)
6

Conditional Assignment

 Classical C-style conditional expression:

assign y = s ? d1 : d0; // s is a single bit

Note that as in C, 1 is equivalent to “condition true”)

• Does not have multiple tests (VHDL’s with or
when), but they can – somewhat inelegantly –
be faked by a chain of conditional expressions

7

Internal variable

 Normally in a complex architecture you need intermediate
values. They need to be declared before used – anywhere in
the module:

module simple(input a, b, c , output y);

wire a,b,c,y; //not necessary – signals are “wire” by default

wire p; // also not necessary for single bits – but strongly
//recommended

assign p =a | b;

assign y =p & c;

endmodule

Note that all the architecture is still combinational – can be
seen as 2 gates connected together – the synthesizer will
try to fit it in the smaller number of logic blocks in the
target technology (for FPGA, LUTs)

8

Expressions and precedence
 Inversion: ~

 Multiplicative: * / %

 Additive: + -

 Logical shifts << >>

 Arithmetic shifts <<< >>>

 Relative comparison: < <= >= >

 Equality comparison: == !=

 And, nand: & ~&

 Xor xnor: ^ ~^

 Or nor: | ~|

 Conditional: …?...:…
9

Numbers

 Integer and real numbers are written normally (130,
0.12)

 There is no reason to use real numbers but in testbenches
for time expressions – they are most clearly non-
synthesizable

 Integers should be used sparingly, as they can take a lot of
space (typically 32 bits) but they are ok if used as
constants in expressions

 Binary numbers can be written conveniently (it is
good practice to always indicate the bit number):

 8’b10110010

 8’hB2

 Single bits do not require single quotes 0, 1 10

High impedence, uninitialized

 Verilog “bits” are more complex than digitial
bits. Besides '0' and '1' a bit can be:

 'u' : undefined (at start of simulation before any
assignment)

 'z' : high impedence (to model tristate buffers)

 Useful in simulation, ignored in synthesis

 There is a special equality operator === that
checks equality of Xs that are normally ignored

11

Bit swizzling

 It is easy to break up and build a new vector:

assign y[5:3] = {a[2:1] , 1’b0};

 The strange ordering of vector indices makes
sure numeric vectors are read correctly with
constants:

 assign y[3:0] = 4’b1100; /* assigns the (decimal)
number 12 to the 4 Lsbits of y */

 There is a useful repetition operator:

 {a, {3{d[0]}} is equivalent to {a, d[0], d[0], d[0]}

12

Delays

 For simulation (but NOT for synthesis) it is
possible to fix the delays in assignments:

 assign #2 y = a;

 assign #10 z = b + c;

 The timescale is defined at the beginning of
the file:

 `timescale 1ns/1ps /* unit = 1ns simulation
resolution = 1ps */

 Synthesis does not use them at all, and if you
want to set a timing constraint, you need to
follow a different route (see the next days).

13

Structural modelling

 How to describe very complex systems?

 By having a hierarchy of modules, in which one is
used in a higher module

 Anmodule that is used in a higher level module is
instantiated by name – only one module with the
same name – no need for configurations

 The instance syntax is somewhat different than
VHDL : the name of the component comes first,
then the instance, than the port map.

 Comp_name inst_name (.f1(a1), .f2(a2),.f3(a3)); where f
are formal parameters, a actual signals in the upper
module 14

Example – leaf module

15

Example – hierarchy top

Assignments of .formal(actual):
c is a signal in Mux4, a is its name in Mux2

16

No need to declare a module:
just use its name

Side note – strange/confusing
conventions

• Verilog has some different conventions and symbols than
VHDL:

• Colons inside a port, semicolons as a statement/instance separator

• Module x(a, b, c);

• Test for equality is ==

• Test for inequality is !=

• There are 3 types of assignments:

• = in continuous assignments

• = inside always or initial (blocking assignments)

• <= inside always or initial (non-blocking assignments)

• If statements ALWAYS require parenthesis, and no then and end if;

• Alternative if is else

• Comments are introduced by // or /* … */ as in C

17

Sequential Logic

 In Verilog this needs to be described using
special always statements

 always @(posedge clk)

 Signals in always statements cannot be wires, they
need to be declared reg:

 reg clk;

 The key for the synthesizer to recognize
sequential logic is the fact that the
assignments are not continuous – there are
conditions in which nothing happens now –
see the D-FF of the following page

18

D-FF

Sensitivity list: only when there is
a change in the listed signals
the process is active

This is happening only at the rising edge of clk, all other times q remembers the old value

19

All signals on the LHS
Of an assignment inside always and initial
Need to be declared reg (even if not sequential!

Resettable registers

Asynchronous reset:
It operates independently of clk

20

Verilog2001 allows
(posedge clk, posedge rst)

Synchronizer

IMPORTANT!
The assignments are performed using the
d and n values BEFORE the clock transition
so this introduces an extra clock delay!

21

Also n needs to be declared reg

Counter

No need for internal signal as Verilog
has no constraints on outputs being
used inside an architecture

22

Latch

Note the sensitivity list -
No “posedge”

NOTE: Xilinx discourages the use of latches and asynchronous resets – mostly for timing
closure issues, but they are occasionally handy (to record one time flags, for example)

23

Combinational processes
 Processes can be also used to describe

complex combinational logic, not only
sequential:

 The trick is to make sure that ALL possible
changes in the used signals are actually taken into
consideration

 This requires having all “input” signals in the
sensitivity list (if not, the system might work but the
simulation might not match the synthesis)

 Verilog2001 has a shortcut to guarantee it in always
statements: always @(*)

 And also making sure that all “outputs” are
assigned a value in the process no matter the
value of any signal

24

Example of wrong “combinational”
process

always @(a)

begin

if a == 2’b00

y <= 1’b0;

else if a == 2’b01

 y <= b;

else if a ==2’b10

Y <= b;

end

b missing from sensitivity list

Ooops – what happens if a = “11”?

25

Corrected “combinational” process

always @(a or b) // in Verilog 2001 also always @(a,b)

begin

if a = 2’b00

y <= 1’b0;

else if a = 2’b01

y <=b;

else if a = 2’b10

y<=b;

else

y <=b;

end

All used signals in sensitivity list

Else guarantees all cases are covered

26

Types of assignments inside a
process

 There are 2 types of signal assignments in a
process:

 Non-blocking: signalled by the use of <=

 Same meaning as in VHDL – all changes are done
based on the values before entering the always block.
One assignment “does not block” the next.

 Blocking: use the =

 The execution makes sure that the assignment is
performed before the next are executed, so in practice
the assigned signals behave as VHDL variables, and
can be used to force immediate evaluation

27

Example of blocking assignment

reg [7:0] v1;

reg [7:0] v2;

always @(posedge clk)

begin

v1= a + b;

v2 = c + d;

y<= v1+v2;

end

At every clock cycle, y will be updated
with the current value of a+b+c+d. What would have
Happened if v1 and v2 were assigned using <=?

28

Statements allowed inside a always
or initial

 Case statements:

case (a)

2’b00 : y<= 1’b0;

2’b01 : y<= b;

2’b10 : y<= b;

default : y<=b;

endcase

29

Statements allowed inside an
always or initial

 Some statements are very useful for
simulation but are meaningless and should not
be used for synthesis:

 #number → used to introduce a finite delay
between one statement and the next – no code
with this will be synthesizable (we'll see it in
testbenches)

 No assert statements, but can be mimicked with if
checks

30

FSM descriptions
 FSM can be described in various ways in Verilog.

The most common ways are trying to mimic the HW
implementation of FSMs:

 2 processes, 1 updating the state at the clock tick, 1
computing the future state and outputs

 3 processes, 1 updating the state at the clock tick, 1
computing the future state, 1 computing the output (can
easily distinguish Moore and Mealy machines).

 A single process, updating a single state signal inside a
posedge clock always statement – only for Moore
machines

 It typically uses:

 case statements to distinguish between the current state

 Verilog does not have enumeration types for states – they
need to be assigned

31

FSM example – 2 processes

This process needs to be completely combinational
 – next_state needs to be assigned for any possible
Input – sensitivity list @(*) guarantees that all signals
are listed – case statement and if statements
cover all cases (check!)

32

Verilog does not have enumerative types: we can “fake” it
using parameters (constants at compile time)

Default gurantees that the FSM will always
Land in a legal state, also in simulation

Testbenches
 Once a module is written and passes syntax

checks, how do we test it behaves as
expected?

 Simulation of course, but how do we feed the
inputs?

 Building a testbench: a Verilog code that can be
simulated and that provides all appropriate inputs
and relative timing

 A testbench:

 Is an empty entity (no inputs or outputs – and no
port!)

 uses # constructs to add delays and synchronize
the inputs with clocks

33

Example

Testbench for the FSM

Sequence of inputs

34

Instance of “Unit Under Test”

No further change from here

