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Existing parametrizations (e.g. for p̄) mostly outdated

tuned to old experimental data

based on empirical scaling laws
⇒ unreliable/incorrect HE extrapolations

Calculations of ’nuclear enhancement’
(e.g. due to production of secondary CRs by primary nuclei)

practically no data on forward spectra for Ap & AA

⇒ theoretical guidance needed

Specific for d̄: importance of phase space correlations between
produced particles
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HE interaction models: what is attractive?

HE physics is more transparent

e.g. rising importance of perturbative QCD processes

⇒ cleaner theoretical framework possible

⇒ predictive power
(though models are largely phenomenological)

personal attitude: weight N of adjustable parameters by
potential predictions

Example: comparison of pre-LHC models to first LHC data

bad surprise for ’accelerator’-based MC generators
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HE interaction models: what is attractive?

HE physics is more transparent

e.g. rising importance of perturbative QCD processes

⇒ cleaner theoretical framework possible

⇒ predictive power
(though models are largely phenomenological)

personal attitude: weight N of adjustable parameters by
potential predictions

Example: comparison of pre-LHC models to first LHC data

much better agreement for CR interaction models
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How will it change at low energies?

multiple scattering dies out in pp

multiple scattering on nuclei - à la Glauber:
one after the other

in addition: intranuclear cascades

cascades have planar structure:
quantum numbers are transferred

using the RTF language:
universal Pomeron replaced by a zoo of Reggeon exchanges

for each Reggeon type: its own parameters

at even lower energies: zoo of resonances

If we plug it all in, with dozens of new parameters...

no warranty it will work properly
(the model will remain a phenomenological one)
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Most of available data dates back to 70s

Typically, spectrometer (fixed angle ϑlab) measurements

⇒ pt− & pl−dependences folded together (pt ≃ ϑlab pl)

feed-down corrections from Λ & Σ decays not applied

⇒ numerous caveats for model tuning / parametrizations

Recent benchmarks: NA49 studies of pp & pC at 158 GeV/c)
[Anticic et al. 2010; Baatar et al. 2013]

wide kinematic coverage (pt − pl)

detailed analysis of systematics (e.g. feed-down corrections)

pt−integrated results provided!

As LE benchmark I’ll use pp & pBe data for plab = 19.2 GeV/c
[Allaby et al. 1970]

Just one popular LE interaction model compared to NA49 data
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p̄ production at low energies: experimental data & models

Most of available data dates back to 70s

Typically, spectrometer (fixed angle ϑlab) measurements

⇒ pt− & pl−dependences folded together (pt ≃ ϑlab pl)

feed-down corrections from Λ & Σ decays not applied

⇒ numerous caveats for model tuning / parametrizations

Recent benchmarks: NA49 studies of pp & pC at 158 GeV/c)
[Anticic et al. 2010; Baatar et al. 2013]

wide kinematic coverage (pt − pl)

detailed analysis of systematics (e.g. feed-down corrections)

pt−integrated results provided!

As LE benchmark I’ll use pp & pBe data for plab = 19.2 GeV/c
[Allaby et al. 1970]

HE models: QGSJET-II-04 compared to NA49 data
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the model overestimates p̄-production already at 158 GeV/c

things get much worse at lower energies
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Most of available data dates back to 70s

Typically, spectrometer (fixed angle ϑlab) measurements

⇒ pt− & pl−dependences folded together (pt ≃ ϑlab pl)
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Recent benchmarks: NA49 studies of pp & pC at 158 GeV/c)
[Anticic et al. 2010; Baatar et al. 2013]

wide kinematic coverage (pt − pl)

detailed analysis of systematics (e.g. feed-down corrections)

pt−integrated results provided!

As LE benchmark I’ll use pp & pBe data for plab = 19.2 GeV/c
[Allaby et al. 1970]

HE models: EPOS-LHC compared to NA49 data
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Actually, the model behaved well for γ−production
down to 10 GeV/c [Kacheriess & SO 2012]

may be one can improve p̄ results ’by a small blood’?

Introducing ’patches’ into string hadronization procedure:

1 don’t spoil overall description / HE behavior

2 don’t apply recipies which are obviously wrong

3 don’t introduce many new parameters

NB: A model is not a parametrization:

⇒ can not describe everything perfectly

otherwise predictive power is lost

p̄: cross-check wrt. ALICE data at LHC (900 GeV c.m.)
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Trying to push QGSJET-II to low energies: ’patches’

Actually, the model behaved well for γ−production
down to 10 GeV/c [Kacheriess & SO 2012]

may be one can improve p̄ results ’by a small blood’?

Introducing ’patches’ into string hadronization procedure:

1 don’t spoil overall description / HE behavior

2 don’t apply recipies which are obviously wrong

3 don’t introduce many new parameters

NB: A model is not a parametrization:

⇒ can not describe everything perfectly

otherwise predictive power is lost

p̄: comparison with spectrometer (fixed ϑ) results (19.2 GeV/c)
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QGSJET-IIm: spectra a bit softer than the data

NB: statistics (108 events) insufficient for the tails



Trying to push QGSJET-II to low energies: ’patches’

Actually, the model behaved well for γ−production
down to 10 GeV/c [Kacheriess & SO 2012]

may be one can improve p̄ results ’by a small blood’?

Introducing ’patches’ into string hadronization procedure:

1 don’t spoil overall description / HE behavior

2 don’t apply recipies which are obviously wrong

3 don’t introduce many new parameters

NB: A model is not a parametrization:

⇒ can not describe everything perfectly

otherwise predictive power is lost

Comparison with EPOS-LHC
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Trying to push QGSJET-II to low energies: ’patches’

Actually, the model behaved well for γ−production
down to 10 GeV/c [Kacheriess & SO 2012]

may be one can improve p̄ results ’by a small blood’?

Introducing ’patches’ into string hadronization procedure:

1 don’t spoil overall description / HE behavior

2 don’t apply recipies which are obviously wrong

3 don’t introduce many new parameters

NB: A model is not a parametrization:

⇒ can not describe everything perfectly

otherwise predictive power is lost

QGSJET-IIm compared to NA49 data
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Secondary CR fluxes & Z-moments
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Ii(E) - flux of primary nuclei of type i

nj - ISM density for nuclei of type j
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Z
ij
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∫ 1

0
dz zα−1 dσij→X(EX/z,z)

dz

⇒ simple form for the yields: q
ij
X(EX) = nj Ii(EX) Z

ij
X(EX,αi)

all the information about production (e.g. model-dependence)

– ’hidden’ in Z
ij
X(EX,αi)



Z-moments for p̄ production by protons

Let us be more specific and consider p+p → p̄:

Z
pp
p̄ (Ep̄,α) =

∫ 1

0
dz zα−1 dσp+p→p̄(Ep̄/z,z)

dz
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NB: Z-moments are defined wrt secondary particle energy
(here Ep̄), NOT the interaction energy!
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