MC generators of HE hadronic collisions:
Applications for secondary CRs
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@ Existing parametrizations (e.g. for p) mostly outdated
o tuned to old experimental data
¢ based on empirical scaling laws
= unreliable/incorrect HE extrapolations
@ Calculations of 'nuclear enhancement’
(e.g. due to production of secondary CRs by primary nuclei)
o practically no data on forward spectra for Ap & AA

¢ = theoretical guidance needed

@ Specific for d: importance of phase space correlations between
produced particles
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@ HE physics is more transparent

e e.g. rising importance of perturbative QCD processes

@ = cleaner theoretical framework possible

Example: comparison of pre-LHC models to first LHC data

@ bad surprise for 'accelerator’-based MC generators
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HE interaction models: what is attractive?

@ HE physics is more transparent
e e.g. rising importance of perturbative QCD processes

@ = cleaner theoretical framework possible

Example: comparison of pre-LHC models to first LHC data

@ much better agreement for CR interaction models
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HE interaction models: what is attractive?

@ HE physics is more transparent

e e.g. rising importance of perturbative QCD processes
@ = cleaner theoretical framework possible

@ = predictive power
(though models are largely phenomenological)

@ personal attitude: weight N of adjustable parameters by
potential predictions

Many models overstretched beyond the domain of validity

@ one is expected to describe 'everything’

@ = wins in details, looses in predictive power

@ alternative: get global observables right but fail in details
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Two CR interaction models to be discussed

@ EPOS-LHC (Pierog et al. 2013) - LHC tune of the EPOS
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@ QGSJET-II (SO 2006, 2011) - successor to QGSJET
(Kalmykov & SO 1993, 1997)

@ basic framework similar for both models

o different theoretical formalism, amount of detalization
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@ QGSJET-II: explicit treatment of nonlinear processes:
splitting & merging of parton cascades

o based on all-order resummation of the underlying diagrams
@ = advanced treatment of interaction configurations
@ EPOS: much more advanced hadronization treatment

o also including apparatus of thermodynamics

@ = advanced treatment of particle production & correlations
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How will it change at low energies?

@ multiple scattering dies out in pp

@ multiple scattering on nuclei - a la Glauber:
one after the other

@ in addition: intranuclear cascades

@ cascades have planar structure:
quantum numbers are transferred

o using the RTF language:
universal Pomeron replaced by a zoo of Reggeon exchanges

o for each Reggeon type: its own parameters

@ at even lower energies: zoo of resonances

If we plug it all in, with dozens of new parameters...

@ no warranty it will work properly
(the model will remain a phenomenological one)
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p production at low energies: experimental data & models

@ Most of available data dates back to 70s

@ Typically, spectrometer (fixed angle ¥,p) measurements
s = pi— & p;—dependences folded together (p; >~ Vb p1)
@ feed-down corrections from A & X decays not applied

® = numerous caveats for model tuning / parametrizations

@ Recent benchmarks: NA49 studies of pp & pC at 158 GeV/c)
[Anticic et al. 2010; Baatar et al. 2013]

@ wide kinematic coverage (p; — p1)
o detailed analysis of systematics (e.g. feed-down corrections)

o pi—integrated results provided!

@ As LE benchmark I'll use pp & pBe data for pj,p, = 19.2 GeV/c
[Allaby et al. 1970]



p production at low energies: experimental data & models

@ Most of available data dates back to 70s

Just one popular LE interaction model compared to NA49 data
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p production at low energies: experimental data & models

@ Most of available data dates back to 70s
HE models: QGSJET-1I-04 compared to NA49 data
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@ the model overestimates p-production already at 158 GeV/c

@ things get much worse at lower energies
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Trying to push QGSJET-II to low energies: 'patches

@ Actually, the model behaved well for y—production
down to 10 GeV/c [Kacheriess & SO 2012]

@ may be one can improve p results 'by a small blood’?
@ Introducing 'patches’ into string hadronization procedure:
© don't spoil overall description / HE behavior
@ don't apply recipies which are obviously wrong
© don't introduce many new parameters
@ NB: A model is not a parametrization:
@ = can not describe everything perfectly

o otherwise predictive power is lost



Trying to push QGSJET-II to low energies: 'patches

° ActuaIIy, the model behaved well for y—production
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@ actually, the results climbed some 10% up




Trying to push QGSJET-II to low energies: 'patches’

p: comparison with spectrometer (fixed 9) results (19.2 GeV/c)
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@ QGSJET-IIm: spectra a bit softer than the data
o NB: statistics (10® events) insufficient for the tails




Trying to push QGSJET-II to low energies: 'patches’

° ActuaIIy, the model behaved weII for y—productlon
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Trying to push QGSJET-II to low energies: 'patches’

QGSJET-lIm compared to NA49 data

> >
=} - K=} =
§u [ p+p — p (158 GeV/c) Eu Fp+C - p (158 GeV/c)
x L <
= = = [~ ‘000.
il
10
-2
10
L Ll L
0] 0.2 04

@ now the spectra a bit hard

@ just a compromise description over a wide energy range



Secondary CR fluxes & Z-moments

@ General formula for the yield of particle X (e.g. p):
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o [;(E) - flux of primary nuclei of type i
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Secondary CR fluxes & Z-moments

@ General formula for the yield of particle X (e.g. p):

dc’=X(E,Ex)

QX (EX) = ”J dE dEx

Li(E)

o [;(E) - flux of primary nuclei of type i
- ISM density for nuclei of type j

@ For power-law primary fluxes (I;(E) «< E~%) — Z-moments:

i ! do=X (Ex/z,
Zgg(EX,oc)z/o dz 227! —;ZX/Z 2

@ = simple form for the yields: qz(EX) =n; I;(Ex) ZE(EX,OL,-)

s all the information about production (e.g. model-dependence)
— 'hidden’ in Z}(Ex, o)



Z-moments for p production by protons

@ Let us be more specific and consider p+p — p:

= (EI—’/Z’ Z)
dz

. do?*P
Z (Ep,0) = /0 dz %!
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(only most forward part of the spectrum contributes)
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ZPPE (X /dZZ do d(E/ZZ)
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o 7P o< spectrally-averaged energy fraction taken by p

@ = decreases for 'softer’ production spectrum
(smaller energy fraction z = Ej/E, taken by p)

@ decreases for larger a
(only most forward part of the spectrum contributes)
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Z-moments for p production by protons

@ Let us be more specific and consider p+p — p:

p+p—>p
ZPPE (X /dZZ do d(E/ZZ)
74

o 7P o< spectrally-averaged energy fraction taken by p

@ = decreases for 'softer’ production spectrum
(smaller energy fraction z = Ej/E, taken by p)

@ decreases for larger a
(only most forward part of the spectrum contributes)

c 5 - P+p—p
s e.g. assuming Feynman scaling (unrealistic): dcdiz(h) =f(2)

o Z¥(Ep, ) = o,

inel

o Z¥(Ep, ) = o,

inel

<Z[3> for =2
(np) for a=1

@ NB: Z-moments are defined wrt secondary particle energy
(here E5), NOT the interaction energy!



Z-moments for p production by protons

@ What primary energies contribute for given E;? Define

= 1 _, doPPP(E5/7,7)
Zaom B . 9) = gy |, 6 Tt
Y4 9
XO(Emax — Ep/2)



Z-moments for p production by protons

@ What primary energies contribute for given E;? Define
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Z-moments for p production by protons

@ What primary energies contribute for given E;? Define

N , doPTPP(E5 /7. 2)
Znorm(EmaXaEﬁa(X‘) pr E Ot d dz
X O(Emax — Ep/z)
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Z-moments for p production by protons

@ What primary energies contribute for given E;? Define

N , doPTPP(E5 /7. 2)
Znorm(EmaXaEﬁa(X‘) pr E O(, d dz
XO(Emax — Ep/2)
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Nuclear enhancement for Y & p
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