

Hadronization Dependence in Antideuteron Production

Based on arXiv:1207.4560 [hep-ph], arXiv:1402.6259 [hep-ph]

Department of Physics, University of Oslo

Antideuteron 2014
1st cosmic ray antideuteron workshop
Los Angeles, June 2014

Antideuteron Formation

- Formation of atomic nuclei not handled by Monte Carlos.
 Coalescence model currently state of the art in computing the antideuteron flux
 - Simple model: Nucleons with $\Delta p < p_0$ coalesce to form a nucleus
 - Ibarra, Wild: Additional condition: Close in position space weakly decaying particles considered stable arXiv:1209.5539 [hep-ph]
 - p_0 calibrated against experimental data, large spread in best fit p_0 -values

Calibration of p_0

Best fit p_0 -values [MeV] for various experiments

Experiment	Process	Pythia 6	Pythia 8	Herwig++
ALEPH	e^+e^-	_	192	159
CLEO	e^+e^-	_	133	145
ZEUS	ер	236	_	150
CERN ISR	pp	_	152	221
ALICE	pp	230	_	154

Table from arXiv:1402.6259 [hep-ph]. Pythia 6/8 values are from arXiv:1209.5539 [hep-ph].

■ Why the difference between experiments, and why the difference between the Monte Carlos?

Calibration: A closer look

- Calibration: ALEPH $(e^+e^- \rightarrow Z)$: Herwig++: $p_0 = 110$ MeV, Pythia: 160 MeV arXiv:1207.4560 [hep-ph] *
- Isotropic coalescence: $dN/dT \propto p_0^3$; p_0 only gives the normalization
- No calibration of p_0 can make the shapes of the spectra agree
- Problem: 2-particle correlations

 st Note: Weak decays were included, thus the low numeric values of p_0

The issue of hadronization

- $p_0 \sim 100 \text{ MeV} \lesssim \Lambda_{\rm QCD}$, sensitive to hadronization effects
- Perturbation theory for QCD breaks down at low energies, must resort to phenomenological models
- Monte Carlo: Several free parameters in these models tuned to fit experimental data
- Not specifically tuned to produce correct (anti)nucleon spectra

Uncertainty from Hadronization Uio Department of Physics The Results of Mathematics and Natural Science.

Uncertainty on spectrum due to hadronization?

Dal. Kachelrieß arXiv:1207.4560 [hep-ph]

- ALEPH calibration:
 Herwig++: p₀ = 110 MeV,
 Pythia 8: p₀ = 160 MeV
- Comparison of antideuteron spectra generated with Herwig++ and Pythia
- Large discrepancies, especially at high and low energies

Uncertainty in the final flux

- Uncertainty comparable to that from propagation for $b\bar{b}$ at high energies
- Uncertainty induced by the discrepancy seen at low $x = T/M_{\rm DM}$ expected to appear in the W^+W^- channel for higher DM masses

Tuning of Hadronization Models UiO: Department of Physics The Reculty of Mathematics and Natural Sciences

- The idea: Tune hadronization parameters specifically to reproduce antideuteron spectrum
- Uncertainties in the parameters allow us to find corresponding uncertainty on antideuteron flux
- What if we break processes that we don't tune against?
- Tuning Herwig++: Dal, Raklev arXiv:1402.6259 [hep-ph]
 - Re-tune most important Herwig++ hadronization parameters together with p_0
 - Tune against antideuteron spectra from ALEPH $(e^+e^- \rightarrow Z)$, ZEUS (ep) and CLEO $(\Upsilon$ (1S) decay)
 - Also tune against (anti)proton spectra from ALEPH and OPAL for consistency
 - \blacksquare 4-dimensional parameter space, each parameter point costs ~ 120 CPU core hours

Some 40000 CPU core hours later...

Parameter	Default value	Best fit value	Uncertainty $(1\sigma)^*$
p_0 [MeV]	_	143.2	+6.2 -5.5
ClMaxLight	3.25	3.03	$^{+0.18}_{-0.15}$
PSplitLight	1.20	1.31	+0.19 -0.32
PwtDIquark	0.49	0.48	+0.15 -0.04

Best fit $\chi^2/\text{d.o.f} = 10.6/14.2$

- Highly correlated parameters, challenging to locate best fit point
- Default parameters are reasonably close to best fit point

* Non-parabolic uncertainty calculated using the MINOS algorithm in Minuit

Parameter tuning Best Fit Parameters 9 / 13

Application: Gravitino Dark Matter Uio: Department of Physics The Results of Mattendate and Natural Science.

- Gravitino: Supersymmetric partner of the graviton
- R-parity violation: Gravitino unstable but long lived, good DM candidate
- RPV operators of interest: $\lambda'_{iik}L_iQ_j\bar{D}_k$, $\lambda''_{iik}\bar{U}_i\bar{D}_j\bar{D}_k$
- \blacksquare $\Phi_{\bar d} \propto \Gamma \propto \lambda^2;$ fluxes can easily be re-scaled to any value of λ
- Goal: Set limits on trilinear RPV couplings λ and Gravitino masses $m_{\tilde{G}}$

Antideuteron Spectrum Near Earth UTO: Department of Physics UTO: Department of Physics

Propagation: NFW DM density profile, 'med' set of diffusion parameters

- $m_{\tilde{G}} = 50 \text{ GeV}, \ \lambda = 10^{-5}$
- Flux increases with increasing mass and RPV coupling
- Can set limits on mass and RPV coupling from experiments

Limits on RPV couplings

Prospective upper limits from GAPS

- 95% CL exclusion limits assuming 0 observed events
- Factor 2 4 Stronger than existing limits on RPV couplings from PAMELA p̄ data

- Antideuteron spectrum is highly sensitive to hadronization model
- Difference of factor ~ 3 in antideuteron spectrum between Herwig++ and Pythia at most energies, rapidly increasing towards high/low energies
- Tuning necessary for giving a consistent description
- Uncertainty from tuned parameters of factor < 2 after re-tuning
- Antideuterons can be used to set stronger limits on RPV couplings, in particluar for $\bar{U}\bar{D}\bar{D}$ -operators

Backup Slides

Backup Slides

Backup Slides 14 / 13

Tuned Hadronization Parameters Unit of Physics Peparlment of Physics Peparlment of Physics Peparlment of Physics Physics Peparlment of Physics Peparlment

Tuned Herwig++ hadronization parameters:

- ClMaxLight: Involved in specifying mass threshold for fission of clusters of light quarks
- PSplitLight: Controls mass distribution of clusters (of light quarks) produced in cluster fission
- PwtDIquark: Controls the probability of creating a diquark pair during cluster decay

Backup Slides 15 / 13

Experiments: Number of bins

Experiment	N _{bins}
ALEPH	1
CLEO	5
ZEUS	3
CERN ISR	4+4
ALICE	9
ALEPH, p/\bar{p}	26

 χ^2 from ALEPH proton data weighted down by factor 1/25 to keep it from dominating the parameter determination

Backup Slides 16 / 13

Gravitino Dark Matter

 Thermal production of Gravitinos during reheating can give the right relic density

$$\Omega_{\tilde{G}}h^2 \simeq 0.21 \left(\frac{T_R}{10^{10} \text{ GeV}} \right) \left(\frac{100 \text{ GeV}}{m_{\tilde{G}}} \right) \left(\frac{m_{\tilde{g}}(\mu)}{1 \text{ TeV}} \right)^2$$

Bolz, Brandenburg, Buchmuller; arXiv:hep-ph/0012052

lacktriangle The reheating temperature T_R is weakly constrained, thus so is $m_{\tilde{G}}$

Backup Slides 17 / 13

Gravitino RPV decays

Tree-level Feynman diagrams for decays through $\bar{U}_i\bar{D}_i\bar{D}_k$ -operators

Circle indicates RPV coupling

Backup Slides 18 / 13

Coupling limits: BESS

Current upper limits from GAPS

- 95% CL exclusion limits assuming 0 observed events
- Somewhat weaker than existing limits on RPV couplings from PAMELA p̄ data

Backup Slides 19 / 13

Coupling limits: AMS-02

Prospective upper limits from AMS-02

- 95% CL exclusion limits assuming 0 TOF events and 1 RICH event
- ≤ 1 expected background event in the RICH detector
 - L_i $Q_j\bar{D}_k$: Slightly weaker than \bar{p} limits at low energies, roughly equal above a few hundred GeV
- $\bar{U}_i\bar{D}_j\bar{D}_k$: Factor ~ 1.5 Stronger than \bar{p} limits

Backup Slides 20 / 13