Prospects of antideuteron detection with AMS

Rui Pereira, Philip von Doetinchem University of Hawai'i at Manoa

1st cosmic ray antideuteron workshop

UCLA, 6 June 2014

The AMS experiment

- Large international collaboration for detection of cosmic rays in space
- Prototype AMS-01 flown aboard Space Shuttle in June 1998
 - ~100 hours of data collected
- Final detector AMS-02 installed on International Space Station in May 2011
 - Data taking almost 100% of time
 - 3 years of data collected (~50 billion events), largest CR sample ever
 - Expected to continue for ~10 years more

The AMS-02 detector

- A particle physics detector in space
- Has many of the components found in accelerator experiments:
 - Permanent magnet (B=0.15 T)
 - Silicon Tracker
 - Time-of-Flight (TOF) detector
 - Transition Radiation Detector (TRD)
 - Ring Imaging Cherenkov Detector (RICH)
 - Electromagnetic Calorimeter (ECAL)
 - Anti-Coincidence Counter (ACC)

The AMS-02 detector

- Subsystems provide measurements of:
 - Velocity/direction: TOF, RICH, TRD
 - Rigidity (p/Z): magnet+Tracker
 - Charge (absolute): TOF, Tracker, RICH, TRD
 - Energy: ECAL
- Particles are detectable at kinetic energies of a few hundred MeV/nucleon or greater

Particle signatures in AMS-02

• Different particle types may be distinguished by their subdetector signatures

AMS-02 antideuteron search

- Antideuteron identification requires reliable measurement of:
 - Charge magnitude (=1) & sign (negative)
 - Mass, from velocity/momentum combination:
 - Momentum measured in the form of rigidity (R=p/Z)
 - Methods for velocity measurement:
 - up to ~1 GeV/nuc: **TOF** (directy from Δt between upper/lower planes)
 - at ~1 GeV/nuc: RICH, *NaF radator* (limited by very small acceptance)
 - at ~5 GeV/nuc: RICH, aerogel radiator
 (RICH velocity comes from Cherenkov cone aperture)
- Discreteness of charge, mass values is helpful
 - broad windows may be used
 - closest charges are 100% away, closest masses 50% away
- Existing studies on AMS-02 antideuteron sensitivity were based on superconducting magnet configuration
 - NEW ANALYSIS NEEDED FOR PERMANENT MAGNET SETUP

Cosmic-ray spectrum

- Particles in cosmic rays include:
 - protons (~90%)
 - He-4 (~10%)
 - other nuclei (~1%)
 - electrons (~1%)
 - positrons (~10-3)
 - antiprotons (~10-4)
- Antideuterons have never been observed in CR (as expected from low statistics)
- The spectrum observed by AMS-02 is affected by solar modulation and geomagnetic effects
 - Of particular importance at the GeV region

Cosmic-ray spectrum

Geomagnetic and atmospheric influence

- atmosphere is important source of background for GAPS and AMS (backscatter)
- validated atmospheric/geomagnetic simulation approach based on PLANETOCOSMICS and GEANT4

Cutoff: perpendicular tracks

- geomagnetic field shields especially low-energy charged particles
- effect depends on the position
- precise understanding is needed for systematic corrections

Locations for antideuteron measurement

- Simulations with IGRF geomagnetic field and Tsyganenko 2001 magnetosphere
- Percentage of flight time spent at a certain geomagnetic location where
 - the rigidity cutoff is below
 7GV for protons
 - the zenith angle with respect to the instrument z-axis is cos(θ)>0.6
 - Polar regions of ISS are scanned with 2deg grid, other regions with 10deg
 - Cutoff value is interpolated

Average time spent at low rigidity cutoffs

The current work

- A number of different particle species may mimic antideuterons in AMS-02 data
- Most obvious candidates are particles with similar mass, charge or mass/charge ratio
- All abundant CR particle species must be considered even small contamination fractions may be important if contaminant's flux is large
- Current work: study simulated AMS-02 data to evaluate contamination from different particle species

Some possible contaminants for antideuteron region

- **Protons**: right charge, wrong sign, wrong mass by factor 2, but extremely abundant
- Deuterons: right charge, wrong sign, right mass, very abundant dangerous especially if upgoing
- Antiprotons: potentially one of the most difficult to deal with same charge sign as antideuterons, also hadronic, several orders of magnitude more abundant
- Electrons: most abundant CR component with negative charge, but non-hadronic and with very different mass
- **Positrons**: same as electrons but less abundant and with wrong charge sign if electrons are handled positrons will also be solved
- Helium-4: extremely abundant, same mass/charge ratio, but wrong sign; frequently fragments into deuterons in AMS-02 dangerous if upgoing (the He ion itself or its fragments)

MC samples used

- MC samples used in contamination studies are Geant4 simulations performed by the AMS collaboration
- Simulated samples used (all uniform in log p):
 - **deuterons** (6.2×10^7 particles, 1.5×10^6 triggers, p = 1-20 GV)
 - models used: Glauber-Gribov, BLIC (<5GeV/nuc) + DPMJET2.5 (>5GeV/nuc)
 - protons (1.24x10¹⁰ particles, 3.82x10⁸ triggers, p = 0.5-200 GV)
 - antiprotons ($1.00x10^8$ particles, $2.7x10^6$ triggers, p = 0.5-10 GV)
 - electrons (1.00×10^9 particles, 1.5×10^7 triggers, p = 0.5-10 GV)
 - helium-4 ($6.9x10^8$ particles, $2.5x10^7$ triggers, p = 1-400 GV)
- Geant4 versions: **4.9.6** (d, p, ⁴He), **4.9.4** (p-bar, e⁻)
- Deuteron simulations currently used as reference for antideuteron studies
 - Antideuteron simulations currently being planned
 - Ongoing work in Hawaii on standalone studies with Geant4, experimenting with different physics lists
- Study so far focused on downgoing particles with inclinations up to 45°
 - Upgoing particles are also important

AMS-02 trigger acceptance

- Results obtained from simulations, no cuts applied
 - Fast AMS trigger
- Trigger acceptance in AMS-02 is ~1 m²sr around GeV region
 - Increases with particle energy
 - Similar for e⁻, p, d,
 ⁴He
 - ~30% higher for antiprotons (due to e.g. annihilations)

AMS-02 trigger acceptance

- Features of deuteron curve, with decrease at 2-3 GeV and increase at 10 GeV, may be artifacts of simulation (change of interaction model as function of energy)
 - This reflects large uncertainties in cross-section knowledge

Trigger acceptance

Quality cuts

- Set of cuts originally developed to exclude (anti-)proton contamination in (anti-)deuteron region
 - Hadron/hadron case, so no TRD and ECAL cuts considered
 - Deuteron simulations became available recently, will be considered in future cut upgrades
- Optimized for kinetic energy around 1 GeV
 - Velocity measurement based on TOF data
- Phase space of different variables explored to maximize ratio of "signal"/"noise" events
 - Signal: protons reconstructed as protons
 - *Noise*: protons reconstructed as deuterons
 - Wide mass range allowed in each case ($m_p \pm 20\%$, $m_d \pm 20\%$), exact range will be tuned in the future to optimize event selection
- Specific cuts chosen to preserve high fraction of "signal" events and limit "noise" events

Quality cuts used

• Currently used for MC samples:

- Exactly 1 particle in event, with Tracker & TOF data
- No more than 1 ACC cluster
- Rigidity uses all 7 inner Tracker planes, ≥ 4 having XY hits
- Rigidity measurement robustness:
 - Alternative algorithm gives 0.95x-1.03x of standard algorithm
 - Upper planes give 0.85x-1.25x, lower planes give 0.88x-1.04x
- TOF: 0.3 < β < 1, and ≥ 3 (of 4) planes used, ≤ 2 non-used clusters, energy deposited within 3-10 MeV (upper), 0-10 MeV (lower)
- [continues...]

Quality cuts used

Currently used for MC samples:

- [continued]
- Reconstructed charge compatible with Z = 1:
 - AMS global: 0.7-1.4; Tracker: 0.7-1.3; TOF: 0.7-1.4 (all), 0.5-2.0 (upper & lower)
- Limits on χ² in Tracker, TOF reconstructions

Ongoing work

- Cuts to be refined, TRD/ECAL data added, multivariate analysis also planned
- DAQ-related cuts (geographical position, orientation, detector status...)
 to be introduced in analysis of ISS data

Acceptance after cuts

- Acceptance after cuts at 1 GeV:
 - ~0.08 m²sr for hadrons
 - ~0.03 m²sr for electrons
 - Large electron fraction excluded due to β > 1 reading
- Much smaller value for helium
 - restriction to Z = 1 included in quality cuts
- Quality cuts tend to exclude noisy events (detected as ACC clusters, extra TOF clusters...)
 - higher energy means more interactions
 - also explains why antiprotons (where annihilation is possible) are clearly below protons at low energy

Mass resolution

- Proton results show mass resolution of 12% at ~0.5 GeV after quality cuts are applied
 - Should be enough for good d/p separation if tails were fully Gaussian...

Mass resolution

- Unfortunately, as expected, that is not exactly the case
 - Gaussian curve shown matches top of mass peak
 - Mass peak is slightly asymmetric, with larger tail on the right
 - A tiny, but non-zero fraction of events lies beyond the peak
- Ongoing work to improve reconstruction results

Mass resolution

 $\sigma_{_{\rm m}}$ (GeV) protons at ~0.5 GeV Superconducting magnet configuration 10^{4} would have been better 10³ asymmetric peak - Example for ~0.5 GeV: mass 10² resolution would be 5% instead of 12% **Events** beyond peak 10 with superconducting magnet 0.5 2.5 1.5 3 2 rec mass (GeV) deuteron mass

Next steps

- This is a work in progress
- More studies needed to use the capabilities of AMS-02 in full
 - Further simulations should be performed
 - Expand study to RICH-based region (~5 GeV): smaller geometrical acceptance but greater exposure time due to reduced geomagnetic effects
 - Study upgoing particles
- Improve knowledge of antideuteron cross-sections and detector response
 - Deuteron data may give some insight AMS-02 can help!
 - ... but remember there are significant differences between particles and antiparticles (see e.g. proton/antiproton)
 - Dedicated antideuteron simulations will be performed input welcome