Indirect dark matter detection using cosmic antideuterons: status and prospects

Sebastian Wild (Technical University Munich)

First Cosmic Ray Antideuteron Workshop, June 5, 2014

Based on 1209.5539 (JCAP '13) and 1301.3820 (PRD '13) in collaboration with Alejandro Ibarra

Indirect DM detection with cosmic antideuterons

Motivation of using antideuterons: DM signal ≫ cosmic ray backgnd. [Donato, Fornengo, Salati 1999]

Quite unique in indirect Dark Matter searches!

Indirect DM detection with cosmic antideuterons

Motivation of using antideuterons: DM signal ≫ cosmic ray backgnd. [Donato, Fornengo, Salati 1999]

Quite unique in indirect Dark Matter searches!

- Two basic ingredients from the theory side:
 - a) Sufficient understanding of the spallation background
 - b) Evaluation of the expected flux from Dark Matter annihilations/decays
- In view of the exciting prospects for AMS-02 and GAPS,
 it is important to improve our understanding on both of these points!

Outline

- 1 Reevaluation of the antideuteron background flux
- $oldsymbol{2}$ Prospects for $ar{d}$ detection in view of the PAMELA $ar{p}/p$ data
- 3 Summary & Conclusions

Outline

1 Reevaluation of the antideuteron background flux

- 2) Prospects for \bar{d} detection in view of the PAMELA \bar{p}/p data
- Summary & Conclusions

Production of secondary \bar{d} 's by spallation processes

Chardonnet, Orloff, Salati 1999; Donato, Fornengo, Salati 1999 Duperray et. al. 2005; Donato, Fornengo, Maurin 2008 Ibarra. SW 2013

- Dominant production channel of **secondary** \bar{d} 's: $p_{\text{Cosmic Ray}} + H_{\text{Interstellar Matter}} \rightarrow \bar{d} + X$
- $E_p^{min} \simeq 16 \,\mathrm{GeV}$
 - \Rightarrow a) Suppression due to steeply falling cosmic ray proton flux
 - b) System is highly boosted: additional suppression of low-energetic $ar{d}$

Secondary antideuteron source spectrum

 \hookrightarrow Number of secondary antideuterons produced per unit volume, kin. energy per nucleon $T_{\bar d}$, and time:

$$Q^{\text{sec}}\left(T_{\bar{d}}\right) = \sum_{i \in \{p,\, \text{He},\, \bar{p}\}}^{\text{Cosmic rays}} \sum_{j \in \{p,\, \text{He}\}}^{\text{ISM}} 4\pi\, n_{j}^{\text{ISM}} \int_{T_{\min}^{(i,j)}}^{\infty} \mathrm{d}T_{i} \;\; \Phi_{i}\left(T_{i}\right) \;\; \frac{\mathrm{d}\sigma_{i,j}\left(T_{i},\, T_{\bar{d}}\right)}{\mathrm{d}T_{\bar{d}}}$$

- $\Phi_i(T_i)$: Incident flux of cosmic ray species i \hookrightarrow Measured (precisely) by AMS-01, AMS-02, PAMELA
- $\frac{\mathrm{d}\sigma_{i,j}\left(T_{i},\,T_{ar{d}}\right)}{\mathrm{d}T_{ar{d}}}$: antideuteron **production cross section** in the process i+j
 - \hookrightarrow crucial quantity for the evaluation of the secondary source spectrum!

Coalescence model:

Given an ar p - ar n pair, an antideuteron forms if $\left| ec k_{ar p} - ec k_{ar n}
ight| < p_0$

- \hookrightarrow More on that (incl. the question about the value of p_0) in the talks by Lars Dal and me tomorrow
- The coalescence model can be formulated as

$$\gamma_{\bar{d}} \frac{\mathrm{d}N_{\bar{d}}}{\mathrm{d}^3 k_{\bar{d}}} \left(\vec{k}_{\bar{d}} \right) = \frac{1}{8} \cdot \frac{4}{3} \pi p_0^3 \cdot \gamma_{\bar{p}} \gamma_{\bar{n}} \frac{\mathrm{d}N_{\bar{p}} \mathrm{d}N_{\bar{n}}}{\mathrm{d}^3 k_{\bar{p}} \mathrm{d}^3 k_{\bar{n}}} \left(\frac{\vec{k}_{\bar{d}}}{2}, \frac{\vec{k}_{\bar{d}}}{2} \right)$$

ullet Hence, we need to know the distribution of ar p - ar n pairs in momentum space:

$$\frac{\mathrm{d}N_{\bar{p}}\mathrm{d}N_{\bar{n}}}{\mathrm{d}^3k_{\bar{p}}\mathrm{d}^3k_{\bar{n}}} \ = ?$$

• If the production of \bar{p} and \bar{n} were statistically independent: factorized coalescence model

$$\frac{\mathrm{d} N_{\bar{p}} \mathrm{d} N_{\bar{n}}}{\mathrm{d}^3 k_{\bar{p}} \mathrm{d}^3 k_{\bar{n}}} \, \longrightarrow \, \frac{\mathrm{d} N_{\bar{p}}}{\mathrm{d}^3 k_{\bar{p}}} \cdot \frac{\mathrm{d} N_{\bar{n}}}{\mathrm{d}^3 k_{\bar{n}}}$$

• If the production of \bar{p} and \bar{n} were statistically independent: factorized coalescence model

$$\frac{\mathrm{d} N_{\bar{p}} \mathrm{d} N_{\bar{n}}}{\mathrm{d}^3 k_{\bar{p}} \mathrm{d}^3 k_{\bar{n}}} \ \longrightarrow \ \frac{\mathrm{d} N_{\bar{p}}}{\mathrm{d}^3 k_{\bar{p}}} \cdot \frac{\mathrm{d} N_{\bar{n}}}{\mathrm{d}^3 k_{\bar{n}}}$$

 \bullet Dominant process for secondary \bar{d} production: p+p at $\sqrt{s} \simeq 10$ GeV

Is the factorized coalescence model applicable for the secondary \bar{d} production?

Is the factorized coalescence model applicable for the secondary \bar{d} production?

- Production of \bar{d} is dominated by processes close to the production threshold of the "minimal process" $p\,p \to \bar{d}\,p\,p\,p\,n$
- Production of an antinucleon (plus one additional nucleon due to baryon number consevation) is phase space suppressed

Is the factorized coalescence model applicable for the secondary \bar{d} production?

- Production of \bar{d} is dominated by processes close to the production threshold of the "minimal process" $p\,p \to \bar{d}\,p\,p\,p\,n$
- Production of an antinucleon (plus one additional nucleon due to baryon number consevation) is phase space suppressed

Close to the threshold $E_{\min}^{(p)}\simeq 16$ GeV, there is a strong anti-correlation of \bar{p} and \bar{n} production

Factorized coalescence model gives rise to too large $ar{d}$ yields

Different versions of the coalescence model

"Modified factorized coalescence model" [Duperray et. al. 2002]

ullet In this approach, one adds an additional phase space suppression factor R_n :

$$\frac{\mathrm{d}N_{\bar{p}}\mathrm{d}N_{\bar{n}}}{\mathrm{d}^{3}k_{\bar{p}}\mathrm{d}^{3}k_{\bar{n}}} \ \longrightarrow \ R_{n}\left(\sqrt{s}, E_{\bar{d}}\right) \cdot \frac{\mathrm{d}N_{\bar{p}}}{\mathrm{d}^{3}k_{\bar{p}}} \cdot \frac{\mathrm{d}N_{\bar{n}}}{\mathrm{d}^{3}k_{\bar{n}}}$$

with $R_n\left(x\right) \propto$ total phase space, typically being $\simeq 0.1-0.2$ [Duperray et. al. 2005; Donato, Fornengo, Maurin 2008]

Different versions of the coalescence model

"Modified factorized coalescence model" [Duperray et. al. 2002]

ullet In this approach, one adds an additional phase space suppression factor R_n :

$$\frac{\mathrm{d} N_{\bar{p}} \mathrm{d} N_{\bar{n}}}{\mathrm{d}^3 k_{\bar{p}} \mathrm{d}^3 k_{\bar{n}}} \ \longrightarrow \ R_n \left(\sqrt{s}, E_{\bar{d}} \right) \cdot \frac{\mathrm{d} N_{\bar{p}}}{\mathrm{d}^3 k_{\bar{p}}} \cdot \frac{\mathrm{d} N_{\bar{n}}}{\mathrm{d}^3 k_{\bar{n}}}$$

with $R_n\left(x\right) \propto$ total phase space, typically being $\simeq 0.1-0.2$ [Duperray et. al. 2005; Donato, Fornengo, Maurin 2008]

- As this recipe is not confirmed (nor refuted) by data, we instead use the event-by-event coalescence model
 - \hookrightarrow this is already the standard for $ar{d}$ production from DM
 - \hookrightarrow anti-correlation is directly taken from the Monte Carlo generator
- We use DPMJET-III with $p_0 = 152$ MeV
 - \hookrightarrow we have to (slightly) modify the Monte Carlo output in order to match its \bar{p} yield to the data

Results for the secondary source spectrum Q^{sec}

- \bullet pp and p He are the most important channels
- ullet $ar{p}$ p has a lower threshold for $ar{d}$ production
 - \hookrightarrow larger cross-section, and also the $ar{d}$ are less boosted
 - \hookrightarrow dominates $Q^{
 m sec}$ for small $T_{ar d}$, even though $\Phi_{
 m anti-}p \ll \Phi_p$ [Duperray et. al. 2005]

Propagation of antideuterons in the galaxy

- \hookrightarrow i.e. how to obtain a measurable flux $\Phi_{\bar{d}}\left(T_{\bar{d}}\right)$ at earth for a given source spectrum $Q^{\rm sec}\left(T_{\bar{d}}\right)$
- → See talk by Fiorenza Donato tomorrow!

Relevant processes:

- diffusion, convection
- annihilations on the ISM
- energy losses

Importance of energy loss processes for the $ar{d}$ background

 \Rightarrow Zero background below $T_{ar{d}} \simeq 0.5~{
m GeV/n}$???

Importance of energy loss processes for the $ar{d}$ background

Energy loss effects are crucial for the \bar{d} background for $T_{\bar{d}}^{\rm IS}\lesssim 3~{\rm GeV/n}$ \hookrightarrow redistribution of \bar{d} towards lowest $T_{\bar{d}}$

- ullet Adiabatic energy loss $\propto ec{
 abla} \cdot ec{V}_c$ (dominant energy loss mechanism)
- "Tertiaries": $\bar{d}+p \rightarrow \bar{d}+X$
- Reacceleration

Result for the antideuteron background flux

Result for the antideuteron background flux

- Within the uncertainties, our event-by-event calculation agrees with the calculations based on the "modified factorized coalescence model"
- Dominant sources of uncertainties:
 - ullet production cross section o coalescence model
 - ullet energy loss mechanisms, in particular $ec{
 abla} \cdot ec{V}_c$

We estimate a total uncertainty of a factor $\simeq 3$, though it is very hard to quantify this reliably!

Implications for AMS-02 and GAPS

- Expected number of \bar{d} background events:
 - $\simeq 0.1$ at AMS-02 (\pm uncertainties!)
 - $\simeq 0.02$ at GAPS (ULDB) (\pm uncertainties!)

The detection of **a few** ($\gtrsim 2-3$) \bar{d} at AMS-02 or GAPS would be a strong indication for an exotic source

Outline

Reevaluation of the antideuteron background flux

- 2 Prospects for $ar{d}$ detection in view of the PAMELA $ar{p}/p$ data
- 3 Summary & Conclusions

Prospects for \bar{d} detection in view of the PAMELA \bar{p}/p data

How many \bar{d} events from DM can (at most) be expected at AMS-02 and GAPS?

How many \bar{d} events from DM can (at most) be expected at AMS-02 and GAPS?

- This is (of course) a model-dependent question
- One way of assessing the prospects for detection: compare expected \bar{d} signal with associated PAMELA \bar{p}/p data
 - $\hookrightarrow ar{d}$ and $ar{p}$ production from DM is highly correlated for every model

PAMELA data on \bar{p}/p flux ratio

 \Rightarrow No need for an exotic component \Rightarrow **Antiproton constraints** on Dark Matter models: Spallation background + DM induced flux \leq PAMELA data

Production and propagation of primary $ar{p}$ and $ar{d}$

Production:

- ullet $ar{p}$ and $ar{d}$ can be produced in DM annihilations or decays
 - \hookrightarrow We consider annihilation into W^+W^- and $b\bar{b}$
 - \hookrightarrow "representative", but of course not exhaustive
- \bar{p} and \bar{d} production is simulated with PYTHIA 8 $\hookrightarrow \bar{d}$ production uses the coalescence model with $p_0=192\,\mathrm{MeV}$
- We use three different Halo profiles (NFW, Einasto, Isothermal)

Propagation:

- ullet Same diffusion model as for secondary $ar{d}$
 - \hookrightarrow However, energy loss effects can be neglected for primary $ar{d}$
 - \hookrightarrow see talk by Fiorenza Donato about the details
- We use three different sets of propagation parameters:
 MIN, MED and MAX [Donato et. al. 2004]

Prospects for \bar{d} detection in view of the PAMELA \bar{p}/p data

• Shaded regions: 95% C.L. exclusion from PAMELA \bar{p}/p \hookrightarrow using NFW profile, MED propagation parameters

- Shaded regions: 95% C.L. exclusion from PAMELA \bar{p}/p \hookrightarrow using NFW profile, MED propagation parameters
- Red and blue: cross sections necessary for an expectation of a primary d̄ signal at 95% C.L.

 → 2 events for AMS,

 1 event for GAPS (ULDB)

Sebastian Wild (TUM)

Maximimal number of \bar{d} events at AMS-02

Red curves:

Maximal number of \bar{d} at AMS-02 compatible with \bar{p}/p constraints (MIN, MED, MAX)

 Propagation uncertainties largely cancel out for the maximal number of events

Detection of one event with AMS-02 is (marginally) viable for $m_\chi < 100$ GeV, if $p_0 = 192$ MeV

Maximimal number of \bar{d} events at GAPS (ULDB)

Blue curves:

Maximal number of \bar{d} at GAPS (ULDB) compatible with \bar{p}/p constraints (MIN, MED, MAX)

Depending on the prop. model, we can hope for one event for $m_{\rm DM} \lesssim 100-130\,{\rm GeV}\,(W^+W^-)$ $m_{\rm DM} \lesssim 30-300\,{\rm GeV}\,\big(b\bar{b}\big),$ if $p_0=192\,{\rm MeV}$

• Red and blue curves: Maximally allowed \bar{d} fluxes $(m_{\rm DM}=0.1/1{\rm TeV})$

Maximally allowed $ar{d}$ fluxes are still well above the background

There is room left for a DM induced \bar{d} flux above the background

Prospects for AMS and GAPS: caveats?

- Summary of the prospects for $b\bar{b}$ and W^+W^- :
 - PAMELA \bar{p}/p data allows for one event at...
 - ... AMS-02, if $m_\chi \lesssim 100$ GeV
 - \hookrightarrow however, one event would not be conclusive in view of ~ 0.1 expected background events
 - ... GAPS, if $m_\chi \lesssim 30-300$ GeV, depending on the propagation model and the annihilation channel

Prospects for AMS and GAPS: caveats?

ullet Summary of the prospects for bar b and W^+W^- :

PAMELA \bar{p}/p data allows for one event at...

- ... AMS-02, if $m_\chi \lesssim 100$ GeV
 - \hookrightarrow however, one event would not be conclusive in view of ~ 0.1 expected background events
- ... GAPS, if $m_\chi \lesssim 30-300$ GeV, depending on the propagation model and the annihilation channel

Possible and impossible caveats

- These numbers are for $p_0 = 192 \text{ MeV}!$
 - $\hookrightarrow N_{\bar{d}} \propto p_0^3$
 - \hookrightarrow this can boost (or decrease) the \bar{d} signal, without affecting the \bar{p}/p bounds
- Different propagation models or parameters?
 - \hookrightarrow unlikely, as the strong correlation of the \bar{p} and \bar{d} is (almost) independent of the propagation model
- ullet $uar{u}$ channel is more promising for low m_χ (see talk by Nicolao Fornengo)

Outline

Reevaluation of the antideuteron background flux

- ${\color{red} 2}$ Prospects for \bar{d} detection in view of the PAMELA \bar{p}/p data
- Summary & Conclusions

Summary & Conclusions

Event-by-event calculation of the $ar{d}$ spallation background

- ullet The event-by-event approach is important due to the anti-correlation of $ar{p}$ and $ar{n}$ production in spallation processes
- Our final result is a factor of 2 smaller than previous calculations

 → agreement within the uncertainties
- ullet $N_{ar{d}}^{\mathsf{background}}$: $\simeq 0.1$ at AMS-02, $\simeq 0.02$ at GAPS (ULDB)

Dark Matter signal in cosmic antideuterons

- \bullet The PAMELA \bar{p}/p data constrains the maximally allowed \bar{d} flux quite significantly
 - \hookrightarrow this conclusion is pretty robust against propagation uncertainties
- For the **benchmark choice** $p_0=192$ MeV, $\lesssim 2$ events are still possible, if m_χ is small enough
- However: $N_{\bar{d}} \propto p_0^3$
 - \Rightarrow This can boost (but also decrease) the potential d yield, without being in conflict with the \bar{p}/p constraints

Backup slides

Maximal number of events for decaying Dark Matter

Upper panel: AMS-02, lower panel: GAPS (ULDB)