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New AMS results
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“There's no such thing as disappointing.”
(Sam Ting)



New AMS results

Positron fraction
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Secondaries from the Source?

Common belief: secondaries from propagation dominate since the grammage
in the ISM is larger than in the source

<7_src> SJ TSNR ~ 104”'5 yr <7-ISM> ~ Tesc ~ 107 yr
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Secondary Origin of e~

Rise in positron fraction could be due
to secondary positrons produced
during acceleration and accelerated

along with primary electrons
Blasi, PRL 103 (2009) 051105

Assuming production of galactic CR

in SNRs, positron fraction can be
fitted

This effect is guaranteed, only its size
depends on normalisation and one
free parameter that needs to be fitted
from observations
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DSA — Test Particle Approximation

Acceleration determined by compression ratio:

(V5] N9 3r

T = — = — —
uy  my’ r—1

Solve transport equation,

of _8f 1du Of
“oe =Pz T3 oy

f m finj (p)7
Solution forz < 0

f = fini(@) + (f°(p) — finj(p))e *u1/P®P)

where

pd/ I\ Y , B
fo(p)=”y/0 p—]f(%) finj(p') +Cp™7

lim f| < o0

r— 00

downstream upstream

|

?71, ni
A f(z,p)
fo(p) £ (p)e_m w1 /D(p)
— -4
= D(p)/us




DSA with Secondaries

Af(z,p)
* Secondaries get produced with primary spectrum:
fo(p) w1 /D(p)
g+ o< for ocp” e
< > -

D(p)/ua
* Only particles with |z| < D(p)/u can be accelerated

downstream upstream

* Bohm diffusion: D(p) o p

* Fraction of secondaries that go
into acceleration o p

* Equilibrium spectrum

neiocqei(1+§)ocp_’y+p_7+1 Rising positron fractio
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Propagation Setup
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A Hybrid Model

« homogeneous distribution for sources with distances< 1kpc
or ages > 10° yr
* supplement with known young and nearby sources

ot Kobayashiet al., ApJ 601 (2004) 601
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A Caveat
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Electron and positron fluxes
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-> old sources, so most likely TeV
to tens of TeV
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10" |

10°

Rmax = 103 GV
Rmax — 104 GV

10°

101

10
kinetic Energy E [GeV]

103 104

smooth source distribution (lines)
point & burst-like sources (bands)

both, e and e* fluxes

softer than reported by
PAMELA and Fermi-LAT

flattening or cut-off of positron
flux depends on maximum energy
-> old sources, so most likely TeV
to tens of TeV



Positron fraction
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Boron-to-Carbon ratio
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Antiproton-to-proton ratio
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Conclusion

I AMS-02

Rmax = 103 GV
Rmax = 3 X 103GV
Rmax — 104 GV

Astrophysical Acceleration of Very predictive model:
explantions of secondary e* in SNRs nuclear secondary-to-
positron excess: could explain positron  primary ratios

pulsars? excess



