Micro-BEAST-TPC MC simulation studies

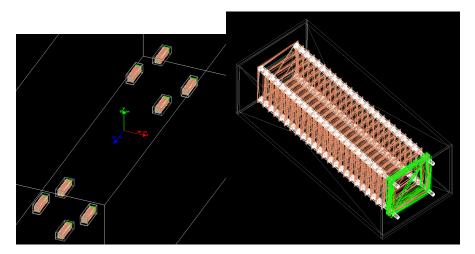
Igal Jaegle

University of Hawai'i at Mānoa

for the Belle2 Collaboration

BEAST Design & Mechanics Meeting - Thursday 13th, June 2013

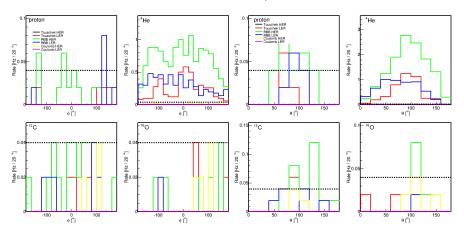
Geometry updated


2 Radiation doses in selected micro-BEAST-TPC parts

Magnetic field effect

Geometry updated

- 8 TPC chambers $10.12 \times 12.7 \times 30 \text{ cm}^3$ (surface $4 \times 5 \text{ inch}^2$)
- active volume 5×5×25 cm³
- surface from 0.72×0.8 to 4×3.36 cm² can be instrumented (1 FE-I3 to 4 FE-I4)
- E || B (0.3 to 0.9 kV/cm [depending of the chip and gas] || 1.5 T)


Angular rate expected of recoils measured at phase 2

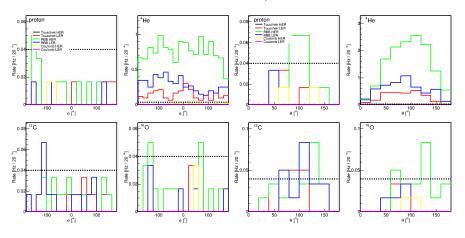
gas mixture He:CO2:70:30 at 1 atm

- 4 chips, directional and edge cuts
- rates for different recoils
- compared to irreductible internal detector background (dashed black line)

azimuthal rates

polar rates

Igal Jaegle (UH)


Angular rate expected of recoils measured at phase 2

gas mixture He:CO2:70:30 at 1 atm with previous geometry

- 4 chips, directional and edge cuts
- rates for different recoils
- compared to irreductible internal detector background (dashed black line)

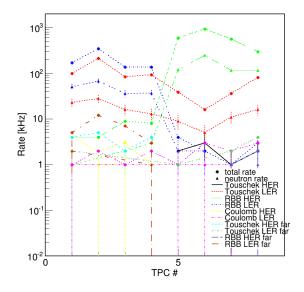
azimuthal rates

polar rates

Igal Jaegle (UH)

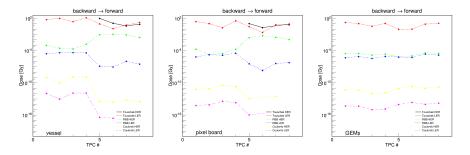
Material budget and dose definition

- material budget used in GEANT4 for the geometry updated
- dose = energy deposited / mass over a year
- material budget


part	mass [kg]
gas	0.00245961
vessel	1.68071
endcap	0.315451
pixel board	0.0367019
pixel chip	0.00258
one ring	0.0282191
copper plate	0.0259732
one GEM	0.03344

conversion table

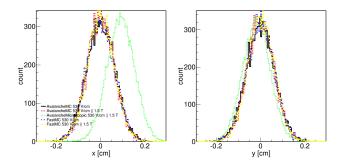
$$\begin{array}{l} 1 \ \mathsf{rad} \ (\mathsf{or} \ \mathsf{rem}) = 0.01 \ \mathsf{J/kg} \\ 1 \ \mathsf{gray} \ (\mathsf{or} \ \mathsf{sievert}) = 1 \ \mathsf{J/kg} \\ 1 \ \mathsf{rad} = 6.24\text{e7} \ \mathsf{MeV/g} \\ 1 \ \mathsf{rad} = 100 \ \mathsf{ergs/g} \end{array}$$


 \bullet TPC mass \sim 2.5 kg

Expected rates in dock-spaces at phase 2

Estimated doses

Estimated doses for a year exposure at phase 2 luminosity derived from 5th compaign MC simulation at designed luminosity


doses range between 10's and 100's Gy or 1's to 10's krad for a year exposure

- GEM and board can operate up to few Mrad
- Touschek radiation dominating due mostly to EM particles
- RBB radiation relatively low

Magnetic field effect

Magnetic field effect on a drifting charge over long distances (25 cm) for the case where E || B in:

- FastMC: MC integration based on the macroscopic drift velocity and diffusion coefficients as functions of the electric and magnetic field
- GARFIELD++/AvalancheMC: MC integration based on the macroscopic drift velocity and diffusion coefficients as functions of the electric and magnetic field
- GARFIELD++/AvalancheMicroscopic: MC simulation based on the microscopic scattering rates as functions of the electron energy ("microscopic tracking")

FastMC and GARFIELD++/AvalancheMC are in good agreement

- bug in GARFIELD++/AvalancheMicroscopic ?
- or MAGBOLTZ coefficients alone cannot properly describe the motion of a drifting charge ?

Igal Jaegle (UH)

μ -BEAST-TPC simulation