

Calibrations for the DarkSide Experiment

Brianne R. Hackett University of Hawaii at Manoa

Symposium on Cosmology and Particle Astrophysics November 14, 2013

Outline

- Brief overview of DS-50
- Goals for Calibration
- Simulations
 - Gamma
 - Neutron
 - CALIS (I & II)
 - Articulated Arm
- Calibration Future

November 14, 2013

DarkSide-50

November 14, 2013

 located at Gran Sasso National Laboratory (LNGS) at a depth of 3400 m w.e.

- 3 year background free running
- projected sensitivity of 10⁻⁴⁵ cm² for a WIMP mass of ~80-100GeV
- 50kg mass with a 33kg fiducial mass
- uses a two-phase argon time projection chamber with underground argon

Muon Veto

- Water Cerenkov detector
- cylindrical tank: 10m diameter, 11m high
- filled with high purity water
- sides and bottom have
 80 8in PMTs

Neutron Veto

- 4m diameter stainless steel sphere
- filled with 30ton of borated liquid scintillator
- scintillator is a mixture of equal parts tri-methyl borate (TMB) and pseudocumene (PC)
- has an array of 110 8in PMTs
- > 99.5% efficiency for radiogenic neutrons
- >95% efficiency for cosmogenic neutrons

Goals for Calibration DS-50

TPC and Neutron Veto

- relative and absolute efficiency in detecting neutrons
- energy scale
- laser runs used for PMT gain and timing calibration
- use of LEDs in the veto for PMT gain calibration

Sources for Calibration

- radioactive: ⁵⁷Co, ¹³⁷Cs, AmBe
- neutron generator
- distributed source: ^{83m}Kr

November 14, 2013

Brianne R. Hackett

6

Simulations

- using Geant4 Monte Carlo package with DS-50 geometry
- Goals of the simulations:
 - simulating sources for the calibration of the TPC
 - want to see where it is useful to position the source; how frequently and how close to the cryostat

Gamma Simulations

gamma was placed close to the cryostat wall and then moved progressively farther out along the xaxis

each simulation was run with 10⁶ events energies used: 122keV (57Co) and 661.7keV (137Cs)

November 14, 2013

Brianne R. Hackett

9

Neutron Simulations

- neutron was placed close to the cryostat wall and then moved progressively farther out along the x-axis
- each simulation was run with 10⁵ events

AmBe Source

Average energy deposited in the active volume

Image Credit: Erin E. Edkins

November 14, 2013

Brianne R. Hackett

12

- want to use to calibrate TPC
- have a source of pure neutrons \rightarrow no gammas
- clean test of detector with neutrons--excellent way of testing nuclear recoils in TPC

- using a triggerable neutron generator by ThermoFisher API-120
- neutrons generated by D-D fusion
- generator detects 3-He which gives neutron direction and timing
- max neutron yield < 10,000 neutrons/sec

- Simulate beam of 2.45MeV neutrons directed toward center of detector
- Positions ranged from 32cm to 42cm distant in the x direction
 - 10⁵ events were used for each position

Average energy deposited in the active volume

Image Credit: Erin E. Edkins, UHM

November 14, 2013

CALIS

(CALibration Insertion System)

- Spring 2013--TPC filled with atmospheric Ar and lowered into neutron veto
- wanted to commission the TPC with the neutron veto filled with air
- development of CALIS I
- Summer 2013--TPC removed from neutron veto for PMT upgrade and then redeployed
- need to commission TPC with neutron veto filled with liquid scintillator
- development of CALIS II

November 14, 2013

CALIS I

- developed and built at UH Manoa
- used in the first DS-50 TPC deployment at LNGS, no liquid scintillator was in the neutron veto
- consists of 4 6 foot long stainless steel tubes, 3 horizontal tubes of varying lengths (15in, 9in, 2.5in) and a collimator
- bottom tube has pivot point to allow the source to be raised to a horizontal position

November 14, 2013

1.0

Brianne R. Hackett

CALIS II

- developed and built at UH Manoa
- developed for use in liquid scintillator
- consists of 4 6ft long vertical tubes,1 vertical tube 5.5ft long; each tube 2in diameter, 1/16 in thickness
- has an inner chimney for guidance and outer chimney to connect to organ pipe above neutron veto

1.1

1.0

Articulated Arm

- to be used in the LSV
- want to deploy sources and neutron gun 4pi around the TPC
- proposed 6 axis arm
- in the initial stages of design

Calibration Future

- Calibration is integral to achieving the 3 year background free running and convincing potential claim of WIMP detection
- Calibration plans include calibration of the TPC and the active neutron veto
- Laser and LED PMT calibrations have been preformed
- Source runs are planned for early next year after needed modifications are done for CALIS II
- Articulated arm will enable extensive calibration of the TPC and neutron veto with both radioactive sources and the neutron generator

November 14, 2013