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Introduction

Spin-independent o, , from current direct searches

The current direct searches are up to m, = 10* GeV.
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Beyond m, = 10* GeV...?

What is beyond m, = 10* GeV?
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Motivations

o Current O';L limits are up to m, = 10* GeV only
o What is o5}, beyond my = 10* GeV, the heavy DM region
@ Earth is potentially an ideal place to probe this problem:

o Sensitive to (o) and o}, both

o Galactic DM can probe (ov) only

e vs from DM in the Sun suffer from severe energy attenuation after a
few TeVs

@ IceCube and KM3NeT may be able to provide answer to this question



Neutrino signals from planet-captured DM

The differential neutrino flux at the detector

annihilation rate

do, _ rA(mX7 <UU> 7JXP) dN,,
dE,dQ 47 R2 DB dE,dQ

~
neutrino spectrum at the detector

with the relation between capture rate(1), e,
4= L tanh?(t\/TcCa) = "€ tanh®(t/75)

where Cp o (ov) m>2</3 and

'G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 268, 195 (1996).



Neutrino spectra dN/dE from DM: Sun

This issue has been investigated sometime ago.(2) Here we reproduce
some of the results with WimpSim.(3) After a few TeVs:

o vs suffer from severe energy attenuation

@ v-spectra strongly depleted
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2M. Cirelli et al., Nucl. Phys. B 10, 001 (2007).
3). Edsjo, http://www.fysik.su.se/ edsjo/wimpsim/.



Neutrino spectra dN/dE from DM: Earth

After a few TeVs:
@ vs do not suffer from severe energy attenuation

@ v-spectra have no sufficiently depleted
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Schematic view of the Earth-captured DM
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DM angular distribution in the Earth(*)

@ Most DM signals are concentrating within 1° when m, > 10* GeV.

@ The spectrum for each m, has been summed over all neutrino types.
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*A. Gould, Astrophys. J., 321, 571 (1987).



Atmospheric background

@ Major atmospheric neutrinos: ve and v,
e Data points from IceCube(®); conventional vs(®) are also presented
@ Prompt vs are not into account.
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Indirect Searches

Track and cascade events

The neutrino event rate

©  dob
N, = Y _A,(E,)dE,dQ
/ah dE,dQ (E)

with two kinds of events:
ve, N.C. & C.C.

Cascade : ¢ v,, N.C. Track: v,, C.C.
vy, N.C. & C.C.

The v effective areas A can be obtained by the effective mass Mg of
lceCube(?) via

Aci(E) = pVes(E)Nao,(E) = Meg(E)Nao, (E).

C. Kopper, Talk @ EPS HEP 2013, Stockholm, Sweden; 18 Jul, 2013.



Indirect Searches

Effective areas

The v, effective areas of lceCube(®) and KM3NeT(9) are from published
papers.

Effective target mass
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Constraints on (ov): IceCube

Reaching 20 and 40 in 5-year observations. ¥max = 1°.
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Constraints on (cv) from unitarity and CMB

o The unitarity bound in the low-velocity limit(10)
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@ Bound from CMB observation(11)

3.6 x 10727 ¢cm3 s71 m,
Tv)oms < f (Gv)

e Beyon m, > 10* GeV, we extrapolated the XENON100 o7}, limit as
our reference

10 F. Beacom, N.F. Bell and G.D. Mack, Phys. Rev. Lett. 99, 231301
(2007).

1T R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, Phys. Rev. D 80,
043526 (2009).



Constraints on (ov): IceCube

Reaching 20 and 40 in 5-year observations. 1)yax = 5°.(12)
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Constraints on (ov): KM3NeT

Reaching 20 and 40 in 5-year observations with 1y, = 1° and 5°.

KM3NeT, 5 years, Y = 1° KM3NeT, 5 years, Ymax = 5°
1072 1020
1072 10721
T oo
% “&
=10 =10
s D
N g <
> ~ ol
1072 . 10-25
1072 10°26
10° 10° 107 10° 10° 107

m), (GeV) my, (GeV)



SI

Constraints on ovp
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e Optimistic one: (ov) ~unitarity

To constrain ¢, we consider two scenarios for (ov):

o Natural scale: (ov) ~ 3 x 10726 cm3 s71.



Constraints on 0}: IceCube with unitarity

Reaching 20 and 40 in 5-year observations. s = 1°.
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Constraints on a%: IceCube with natural scale

Reaching 20 and 40 in 5-year observations. s = 1°.
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Constraints on 0}: IceCube with unitarity

Reaching 20 and 40 in 5-year observations. tyax = 5°.

IceCube, 20 in 5 years, Ypmax = 5° IceCube, 40 in 5 years, Ymax = 5°
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Constraints on a%: IceCube with natural scale

Reaching 20 and 40 in 5-year observations. tyax = 5°.

IceCube, 20 in 5 years, Ypmax = 5° IceCube, 40 in 5 years, Ymax = 5°
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Constraints on 0}1: KM3NeT with unitarity

Reaching 20 and 4o in 5-year observations with ), = 1° and 5°.

(pb)

S1
xp

pe-

107

107

1073

107°

1077

1078

KMB3NeT, 5 years, e = 1°

(ov)~unitarity

P — rwack — Solid: 4o
L — Wirack --- Dashed: 20
10° 100 107

my (GeV)

(pb)
S

SI
xp

I
S
&>

KM3NeT, 5 years, max = 5°

(ov)~unitarity

oY
Qo
MO~

e

—— rtrack —— Solid: 40
—— Wirack --- Dashed: 20
10° 106 107
my (GeV)



Constraints on a%: KM3NeT with natural scale

Reaching 20 and 4o in 5-year observations with ), = 1° and 5°.
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Summary

e Earth indeed is an ideal place to probe (ov) and ai}o in heavy DM
region

@ Suppressed atmospheric background

o Taking XENON100 extrapolation in heavy DM region as our input:

o When m, < 10° GeV, (ov) constraints from xx — 777~ and
xx — WTW™ tracks have the most stringent limit in lceCube

o Beyond m, 2 10° GeV, xx — 717~ cascade is the most stringently
constraint in lceCube

o The constraint obtained from yx — 777~ is comparable to the
constraint obtained from xx — W™ W™ with KM3NeT designed
sensitivity

e With unitarity bound and natural scale implemented in (ov), it is
possible to obtain optimistic and conservative limits for ‘7% with
given detector sensitivity.
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