

ERRE

Recent results from the Pierre Auger Observatory

CosPa 2013

Honolulu, Hawaii, USA

Harm Schoorlemmer¹ for the Pierre Auger Collaboration

¹University of Hawaii at Manoa

1

Auger ICRC 2013: arXiv:1307.5059 Auger + TA: arXiv:1310.0647

Outline

- Observatory and Performance
- Energy Calibration and Energy spectrum
- Mass composition and Hadronic interactions
- Large scale anisotropy

Collaboration : ~ 500 members & 19 countries

The surface detector: 1660 Water-Cherenkov Detectors

Regular Array, triangular grid of 1500m spacing: $E > 3 \ge 10^{18} eV$ Infill Array, triangular grid of 750m spacing: $E > 3 \ge 10^{17} eV$

The fluorescence detector: 27 telescopes

4 sites with 6 telescopes + 3 High Elevation

Telescopes

on-time fraction

Performance: 13% on-time Time 2006/01 2007/01 2010/01 2011/01 2012/01 2008/12 Scheduled DAO time Los Leones os Morados oma Amarilla Coihueco HEAT 101 10 30 40 70 80 20 50 60 90 shift number

6

The absolute energy scale

-The fluorescence telescopes provide a nearly calorimetric measurement of the air shower

-Recent improvements in calibration and reconstruction shifted the energy scale by **15.6%** and reduced the systematic error on it from 22% to **14%**

Fluorescence Yield: Calibration: Reconstruction of the longitudinal profile: Invisible energy:

+4.4%

Measuring the point spread function with light source on an octocopter

The Exposure and Energy Estimators

	Auger SD			Auger hybrid
	1500 m vertical	1500 m inclined	750 m vertical	
Data taking period	01/2004 - 12/2012	01/2004 - 12/2012	08/2008 - 12/2012	11/2005 - 12/2012
Exposure [km ² sr yr]	31645 ± 950	8027 ± 240	79 ± 4	see Fig. 1
Zenith angles [°]	0 - 60	62 - 80	0 - 55	0 - 60
Threshold energy $E_{\rm eff}$ [eV]	3×10^{18}	4×10^{18}	3×10^{17}	10 ¹⁸
No. of events $(E > E_{eff})$	82318	11074	29585	11155
No. of events (golden hybrids)	1475	175	414	-
Energy calibration (A) [EeV]	0.190 ± 0.005	5.61 ± 0.1	$(1.21\pm0.07)\cdot10^{-2}$	-
Energy calibration (B)	1.025 ± 0.007	0.985 ± 0.02	1.03 ± 0.02	-

The Auger Energy Spectrum

The Auger Energy Spectrum

Normalization: hybrid -6%, inclined +4%, 750m array +2%, SD -1%

Mass Composition:

Evolution of the first two moments of the X_{max} distributions

Mass Composition: Muon production depth

From time delay we can estimate location of emittance on the shower axis

Mass Composition: Muon production depth

Validation on MC

Results on data

Hadronic interaction models and number of muons

Pick from simulations the best fit to the measured longitudinal shower profile for different primary particles.

Compare to observed signal on the ground to the expectation from the measurements.

Ground signal is higher than expectation!

Hadronic interaction models and number of muons

Fit the simulated ground signal using two rescaling factors:

- R_{μ} rescale the number of muons from hadronic origin
- $\begin{array}{ll} \mathrm{R}_E & \mbox{rescale the number of particles according} \\ & \mbox{to the energy of the primary particle} \end{array}$

Hadronic interaction models underestimate the number of observed muons!!

Also confirmed by number of muons in inclined events, and from muon estimates from the time structure of the SD-PMT time series

Large scale anisotropy

Equatorial dipole amplitude

16

Large scale anisotropy

Equatorial dipole phase

17

Conclusions

Energy scale understood to 15%

The Pierre Auger Observatory provides the measurements to test high energy hadronic interaction models

Large scale anisotropies start to look interesting!!

And there is more: radio detection, extensions, neutrino flux limits, neutron flux limits, joint efforts with the telescope array Auger ICRC 2013: arXiv:1307.5059

Auger + TA: arXiv:1310.0647

backup slides

Radio emission with the Auger Engineering Array

Polarization angle as a probe of the emission mechanism

GHz radio detection of Air Showers

Hadronic interaction models and number of muons

 $\frac{f_{\mu}(\text{meas.})}{f_{\mu}(\text{sim})} = 1.33 \pm 0.02(\text{stat.}) \pm 0.05(\text{sys.})$ (p - QGSjetII-04)

SUMMARY

- AUGER PROVIDES A WEALTH OF HIGH QUALITY DATA
- PIERRE
- WE OBSERVE A COHERENT BEHAVIOR OF OBSERVABLES

