The Birth of Neutrino Astrophysics

Naoko Kurahashi Neilson

University of Wisconsin, Madison IceCube Collaboration

CosPA – Nov 15th, 2013

Outline

- The Case for Neutrino Astrophysics
- First Evidence
- Neutrino Astronomy v1.0
- Beyond v1.0

AR

Outline

- The Case for Neutrino Astrophysics
 - First Evidence
 - Neutrino Astronomy v1.0
 - Beyond v1.0

AR

1

Neutrino Astronomy

Neutrino Astronomy

J. Cronin, T.K. Gaisser, and S.P. Swordy, Sci. Amer. v276, p44 (1997)

- Low energy cosmic-rays can't escape local magnetic fields
- High-energy cosmic rays hitting gas clouds or interstellar dust interact and deplete

 p+p or nucleon+p type interactions give neutrinos

Absorption of cosmic rays means creation of neutrinos

Neutrino Astronomy

10's and 100s of EeV cosmic rays have been observed

Above ~5 x 10₁₉ eV, cosmic rays interact with CMB to produce pions:

Dedicated GZK Neutrino Searches

Oceanic Ambient Noise as a Background to Acoustic Neutrino Detection, N. Kurahashi and G. Gratta, *Physical Review D* 78, 092001 (2008)

Neutrino Astronomy

γ ray Telescopes

Producing γ rays

Leptonic or Hadronic?

<u>Neutrinos would be definitive evidence of hadronic emission</u> If neutrinos are observed \rightarrow Confirmation of hadronic emission If neutrinos are not observed \rightarrow Limit on the hadronic emission

Neutrinos do not attenuate at high energies! Spectrum keeps going....

Neutrino Astronomy

Outline

- The Case for Neutrino Astrophysics
- First Evidence
 - Neutrino Astronomy v1.0
 - Beyond v1.0

AF

IceCube Sees Excess Events at High Energies Using Contained Events!

<u>IceCube</u> Sees Excess Events at High Energies Using Contained Events!

detection principle

Topologies of different event types

CC Muon Neutrino

Neutral Current /Electron Neutrino

Track

Shower

CC Tau Neutrino

time

Double-Shower (not observed yet)

IceCube Sees <u>Excess Events</u> at High Energies Using Contained Events!

What should IceCube see?

What should IceCube see?

What should IceCube see?

IceCube Sees Excess Events at <u>High</u> <u>Energies</u> Using Contained Events!

Why is high-energy important?

π/K Atmospheric Neutrinos (dominant < 100 TeV)
 Prompt Atmospheric Neutrinos (expected > 300 TeV)
 Astrophysical Neutrinos (maybe dominant > 100 TeV)
 GZK Neutrinos (10⁶ TeV)

IceCube Sees Excess Events at High Energies Using <u>Contained Events</u>!

Events with interaction vertices contained inside the IceCube detector

More likely to be neutrino events

The higher the energy, the better this works!

Tagging atmospheric neutrinos

IceCube Sees Excess Events at High Energies Using Contained Events!

Declination Distribution of Events

Declination Distribution of Events

= zenith

ALL EVENTS

EVENTS > 60 TeV

Summary So Far

- Above 4σ evidence of astrophysical flux
- Consistent with 1:1:1 flavor ratio
- Flux at ~ $10^{-8}E^{-2}[GeV/cm^2/s/str]$
- There seems to be a cutoff at a few PeV or a slightly softer than E⁻² spectrum
- Declination distribution of events compatible with a diffuse source → similar flux level at northern and southern hemisphere

Outline

- The Case for Neutrino Astrophysics
- First Evidence
- Neutrino Astronomy v1.0
 - Beyond v1.0

AR

So what are the source(s) of these events?

Test Statistic Map

Reconstruction Capabilities

@ 100 TeV energiesEnergy
Reconstruction*Directional
Reconstruction*TracksOkayGoodShowersGoodOkay

* against primary neutrino energy and direction

Reconstruction map of a ~60 TeV shower-like event in local coordinates

Likelihood Search for a Point Source - Test Statistic (TS) Calculation -

* Events' energies not used in the likelihood

TS is calculated for every point in the sky x

$$TS(x) = 2 \times \log \left(\frac{L(x)}{L_0}(x) \right)$$

where $L_0 = L(x, n_s = 0)$

How many sources?

Could it be Starburst Galaxies?

IceCube does a stacking analysis on close-by starburst galaxies using clean muons and has a strong upper limit arxiv:1307.6669

Stacking of catalog of 127 starbursts

- Within z < 0.03
- F_{FIR}(60 micron) > 4 Jy
- $F_{radio}(1.4 \text{ GHz}) > 20 \text{ mJy}$

Unbroken E⁻² flux limit: 7 x 10⁻¹⁰ E² GeV cm⁻²s⁻¹sr⁻¹

Bright, nearby starbursts can only be responsible for ~< 10% of HESE flux

Do the events cluster around the Galactic Plane?

*Only +/- 2.5 deg is a priori

Summary of Neutrino Astronomy v1.0

- No clustering in space (or time)
- No clustering in Galactic Plane
- Not from close by starburst galaxies
- "Traditional" point source search limits suggest many sources contributing to the flux
- Everything so far points to diffuse sources

Outline

- The Case for Neutrino Astrophysics
- First Evidence
- Neutrino Astronomy v1.0
- Beyond v1.0

AR

Challenges of Neutrino Astronomy

The Neutrino Astronomy Catalog

The Sun

super-kamiokande

Supernova 1987A

At 16:35:35 (±1 minute) on February 23, 1987, Japan time

Challenges of Neutrino Astronomy

- The higher the energy, the fewer there are
 - True for any high-energy telescope

Challenges of Neutrino Astronomy

- The higher the energy, the fewer there are
- Neutrinos don't interact much until very high energies
 - Same characteristics that make neutrinos great messengers make them hard particles to detect

In some ways, this is front-loading the problem.

- Cosmic-rays & gamma-rays: easier to detect, but harder to interpret (source? Spectrum at source?)
- Neutrinos: harder to detect but easier to interpret

• High statistics of events is crucial!

To go beyond v1.0....

- The higher the energy, the fewer there are
- Neutrinos don't interact much until very high energies

- Only first 2 years of IceCube data, IceCube will run a lot longer → we will have many more events!
 Euture: Maybe a bigger logCube?
- Future: Maybe a bigger IceCube?
- Still need to "point" otherwise it's not astronomy

- We need tracks! Tracks are crucial for the discovery of the first source!
- Spacing of array need not be so dense for very high energy track reconstruction → bigger IceCube could be sparser!

DecaCube, the future of IceCube?

The Birth of Neutrino Astrophysics

- The Case for Neutrino Astrophysics
 → is convincing
- First Evidence
 - \rightarrow clearly shows astrophysical neutrinos!

- Neutrino Astronomy v1.0
 - \rightarrow too early to discover their sources
- Beyond v1.0
 - \rightarrow The hunt for sources is on!

Backups

Could it be a Point Source?

- Back of the envelope:
 - best-fit diffuse flux is ~1 x 10-8 GeV/cm²/s/sr
 - Convert to v_{μ} all-sky flux multiply by $4\pi \approx 12 \times 10^{-8} \text{ GeV/cm}^2/\text{s}$
 - But only ~25% of events near hottest spot: ~3 x 10⁻⁸ GeV/cm²/s \rightarrow 3 x 10⁻¹¹ TeV/cm²/s

 \rightarrow 90% of the times, we should start seeing a hotspot there too with the "traditional" point source analysis

- \rightarrow We don't
- → many ways around this
 Not a point source (extended)
 Not equal in flavor
 Not a constant source

Speculation of a cutoff

A flux level of ~10⁻⁸E⁻²[GeV/cm²/s/str] predicts another 3-6 events in 2-10PeV range

Glashow resonance

A case for multi-messenger astronomy

<u>WHERE</u> and HOW do cosmic rays get accelerated? HOW do gamma rays get created?

Comments Astrophys., 14, 323

A case for multi-messenger astronomy

WHERE and <u>HOW</u> do cosmic rays get accelerated? <u>HOW</u> do gamma rays get created?

Crab Nebula What happens at the source? A supernova remnant Normal

x- ray (Chandra) optical (Palomar) infrared (Keck) radio (VLA) γ ray (Fermi LAT)

Developed cascade direction reconstruction!

