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1. Introduction

Affleck-Dine & Q-ball cosmology
Simultaneous explanation for the dark matter & baryon asymmetry in the universe.

- The Affleck-Dine (AD) mechanism is very promising for baryogenesis.
- The AD field consists of some combinations of squarks in MSSM.
- The AD condensate transforms into Q balls.

Q balls will provide both the dark matter and baryon asymmetry.
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Abundances have a direct relation because of the same origin.
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What to be shown Unstable Q balls

Very simple scenario to explain
both DM and B in gauge mediation.

v
Annihilate

Gravitinos = DM Baryons

Affleck-Dine condensate ——— Q balls

If the charge of the Q ball is small enough,
it can kinematically decay into nucleons.

[The decay processes into baryons, gravitinos and NLSPs are studied in detai I]

Q balls are unstable and decay f Baryons
mainly into nucleons,
partially into gravitinos, > DM

tially info NLSPs.
partially into "~ Annihilation occurs efficiently.
Do not spoil BBN.

—) (), ~0.2 (), is naturally explained.



2. Affleck-Dine baryogenesis

Affleck-Dine mechanism
Affleck, Dine (1985)

(1) Affleck-Dine (AD) field has large VEV during inflation.

(2) Starts rotation when H ~ meg(= VV"), after inflation.

—> Baryon number production
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(3) AD field decays into quarks.

MSSM flat direction works as AD field.
Affleck, Dine (1985), Dine, Randall, Thomas (1996)

The MSSM flat direction is a scalar field - B-L B-L )

consists of squarks, sleptons and maybe higgs LH, -1 dddLL -3

whose potential vanishes along that direction. E%‘l '_11 uuuee 1
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2. Affleck-Dine Q-ball baryogenesis

Affleck-Dine Q-ball mechanism
Kusenko, Shaposhnikov (1998), Enqvist, McDonald (1998,1999)
SK, Kawasaki (2000,2001)

(1) Affleck-Dine (AD) field has large VEV during inflation.

(2) Starts rotation when H ~ meg(= VV"), after inflation.
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A Q ball is a kind of non-topological soli‘ron,(p

the energy min. configuration of the scalar
field with non-zero charge Q.

- Coleman (1985) RQ r




3. @ ball in gauge mediation

The potential of the AD field is lifted by SUSY breakmg effects, and

in the gauge mediation it reads as
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Q balls form during the helical motion of the AD condensate.
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4. Q-ball Decay

The decay takes place at the surface. Cohenet al. (1986)
Kawasaki, Yamada (2013)

Maximum charge decreasing rate = Maximum out-going flux
Ling = fé"qn + h.c.
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This saturation occurs typically for f¢ 2 wq.
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For fo <wq, T'g ~ (@) Fgat’d) for the gauge-med. type Q ball.
“eQ Kawasaki, Yamada (2013)

/‘rhe charge decreasing rate is estimated as the product )
of one-particle decay rate, particle Density and
the effective volume.
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4. Q-ball Decay

B Main channel: decay into baryons (quarks) ¢
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(wq < Mj) W@ — 2wq: larger phase space
SK, Kawasaki (2011), SK, Kawasaki, Yamada (2013)
B Decay into gravitinos
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9. Abundances

Since AD field rotates with ellipticity ¢,
the Q ball decays into nucleons, partially
into gravitinos with branching ratio B;,,,
and into NLSPs only with fraction Q../Q
and branching ratio By, sp, we have

(i) Bayon number
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Using (i) & (ii), we obtain the region for simultaneously explaining B & DM.



9. Abundances

(iii) NLSP density
(Q)
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0. Allowed parameter space

(b) m3,, = 500 MeV

Mg [GeV]

(iii) Decay temperature
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(iv) Kinematics wq > myq

(v) Free streaming /(g < Mpc

C Mp =3x10" — 3 x 10°GeV
=> 1 Q=10" —10%

L Mg/ = 50MeV — 5GeV

(i) B & DM
Y,(QD)
Y (NQD) <— Tg-dep.
P;(»,t/hg) < pDM
-2
Triy < 8.3 % 107 GeV (10??\/41\/) (3]\1{5\/)

(ii) Mg limit Mg S E\/m?)/zMP




Unstable Q balls

7. Conclusions

Very simple scenario to explain
both DM and B in GMSB.

v
Annihilate

Gravitinos = DM Baryons

The decay processes into baryons, gravitinos
and NLSPs are studied in detail.

Baryons
Unstable Q balls decay mainly into nucleons, — /

partially intfo gravitinos, ——» DM

partially into NLSPs. \

Annihilation occurs efficiently.
Do not spoil BBN.

(), ~0.2 (), is explained typically for
Q ~ 10 - 10%°, M= 3x107 - 3x108 GeV, m5,, ~0.05 - 5 GeV.



