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CMB Anisotropy Spectrum

The spectrum of CMB
anisotropies reveals a lot
about the history of the
universe

Important events in the
evolution of the universe,
leave there imprint in the
anisotropy spectrum

However, there must be
some initial inhomogeneity in
the curvature of the universe
to “seed” the anisotropy we
see today

∆T (n) =

∞∑
`=1

∑̀
m=−`

a`mY`m(n)

〈a`ma∗`′m′〉 = C`δ``′δmm′
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The Primordial Power Spectrum

CMB anisotropy originated from curvature inhomogeneities at the era of last
scattering.

The spectrum P (k) of the initial inhomogeneity is created at the beginning
of the big bang

They are related by the transfer function as: C` ∝
∫
dk
k T`(k)P (k)

Roughly speaking, inhomogeneity at k correspond to anisotropy at ` = kη0,
where η0 is the conformal distance to the last scattering surface
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The Primordial Power Spectrum

Inflation is the most popular explanation of the source of the initial
curvature inhomogeneities

The simplest inflation models presume that there is a single scalar field φ
(called the “inflaton”) with some potential V (φ)

Inflation begins when the inflaton field “slow rolls” down the side of it’s
potential. During this time the energy density of the inflaton is almost
entirely from the potential energy V (φ), which is the source of the vacuum
energy that propels the inflationary expansion

The spectrum P (k) of the initial inhomogeneity is created by quantum
fluctuations in the inflaton field, which “seed” the CMB anisotropy

Slow roll inflation predicts featureless P (k) with the form

P (k) = P0(k) = As(k/kpiv)
ns−1 (1)

The success of inflation is that ns ' 1, in agreement with observation

However, there is no reason to reject the possibility that “features” might
modulate this near-scale invariant spectrum:
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The Primordial Power Spectrum

More exotic models of inflation predict features in the Primordial Power
Spectrum (PPS) .

Ringing in P (k) due to steps in the inflationary potential.

Adams et al (2001); Joy et al (2008); Starobinsky (1992)

Trans-Planckian Physics

Easther et al (2002)

Stringy effects

Bean et al (2008)

Detection of a feature in P (k) would be an powerful indication of
non-standard inflation models at work
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The Primordial Power Spectrum

In order to find features in the PPS we need to go beyond the standard
As, ns parametrization

Features in the PPS have been searched for using a number of different
techniques

Parametric:

Ichiki et al (2009)

Wavelet expansion:

Mukherjee & Wang (2003, 2005)

Cosmic Inversion:

Matsumiya et al (2002,2003); Kogo et al. (2004); Nagata & Yokoyama (2008)

Richardson-Lucy:

Hamann et al. (2010); Shafieloo & Souradeep (2004, 2008)

Smoothing Spline:

Sealfon et al. (2005); Peiris & Verde (2009) (2008)

Bayesian Model Selection:

Vazquez et al. (2012)
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Maximum Likelihood Estimation

An estimate for the true primordial power spectrum can be obtained by
finding the P (k) that maximizes the CMB likelihood function.

The CMB likelihood assumes that temperature fluctuations are gaussian:

L(C`|m) ∝ |C(C`) + N|−1/2 exp

(
−1

2
mt[C(C`) + N]−1m

)
(2)

m = s+ n: s and n are vectors of the CMB signal measurements, and
detector noise at each pixel
C(C`): Theoretical signal (CMB) covariance matrix
N: Noise covariance matrix

The CMB likelihood is equal to the probability of obtaining the CMB map
m given the theoretical CMB anisotropy C`

However, for ` & 50, the likelihood of the C`’s is well approximated by a
gaussian.

−2 lnL(C`|C(obs)
` ) ∼

`max∑
`,`′=`min

(C
(obs)
` − C`)K``′(C

(obs)
`′ − C`′) (3)
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Likelihood and the Fisher Information

Let P (κ) = [1 + f(κ)]P0(κ) where κ = ln k

P0(κ) is a fiducial featureless PPS: P0(κ) = Ase
(ns−1)(κ−κpiv)

f(κ) is a small feature

Likelihood expanded around f(κ):

−2 lnL =

∫
dκdκ′[f(κ)− ftrue(κ)]I(κ, κ′)[f(κ)− ftrue(κ)] + const.

I(κ, κ′) is a Fisher information “density” and is given by

I(κ, κ′) =
δ2(− lnL)

δf(κ)δf(κ′)
=

`max∑
`,`′=2

P0(κ)
δC`
δP (κ)

∂2(− lnL)

∂C`∂C`′

δC`′

δP (κ′)
P0(κ′)

=

`max∑
`,`′=2

P0(κ)T`(κ)K``′T`′(κ
′)P0(κ′) =

`max∑
`,`′=2

T`(κ)K``′T`′(κ′)

We use a B-spline basis to reduce functions and kernels into vectors and
matrices

f(κ)→ fi, T`(κ)→ T i` , I(κ, κ′)→ Iij (4)
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PPS Fisher Density

Fisher density gives us a rough determination of the relative accuracy of the
reconstructed P (k) between different ranges of k

Best chance of detecting a feature at 0.01 Mpc−1 < k < 0.1 Mpc−1
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PPS Reconstruction

The reconstructed PPS is obtained by finding the B-spline control points fi
that maximize the CMB likelihood. Or alternatively, minimize S = −2 lnL

For the time being let’s consider all cosmological parameters that don’t
parametrize the PPS as being fixed

Because of the simple linear relationship between C` and fi the
Newton-Raphson method can be used to find the maximum likelihood
solution for fi

The Planck CMB likelihood (for high `) is gaussian in the C`’s. The
maximum likelihood solution for fi would be

fi =
∑
j

∑
`,`′

I−1ij T
j
` K``′(C

(obs)
`′ − C`′(P0)) (5)

where C
(obs)
` is the observed anisotropy power spectrum, and C`(P0) is the

featureless theoretical anisotropy power spectrum
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PPS Reconstruction

However, in general, Iij is not invertible

As we approach the continuum limit, there are more fi to solve for than C`’s
that we know.

We don’t want to fit the data exactly: We would be fitting to the random
noise in the C`’s

We want to penalize functions that “wiggle” too much

Include a smoothness penalty to the likelihood:

−2 lnL→ −2 lnL+ λ

∫
dκ|f ′′(κ)|2 + α

∫
κ<κlow
κ>κhigh

dκ|f(κ)|2 (6)

End point fixing is included for numerical reasons

From a Bayesian point of view this amounts to a prior expectation on
functions that are smooth

The maximum regulated likelihood solution is:

fi =
∑
j

∑
`,`′

[I−1λ,α]ijT j` K``′(C
(obs)
`′ − C`′(P0)) (7)

In general, the regulated fisher kernel [Iλ,α]ij = Iij +Rij(λ, α) is invertible.
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Random Realizations

After a single reconstruction, we see that the feature is well reproduced
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Random Realizations

After a single reconstruction, we see that the feature is well reproduced

After several reconstructions we see that the feature is recreated consistently
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Random Realizations

After a single reconstruction, we see that the feature is well reproduced

After several reconstructions we see that the feature is recreated consistently

Peaks seen else where, fluctuate in size
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Random Realizations

After a single reconstruction, we see that the feature is well reproduced

After several reconstructions we see that the feature is recreated consistently

Peaks seen else where, fluctuate in size

This is due to noise in the C`’s
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Choosing the Regulator

λ represents the strength of the smoothness constraint.

Cross validation has been used to choose λ in the context of PPS
reconstruction (Verde & Peiris (2008))
Cross validation is problematic when there are correlations between data
points
Computationally Prohibitive

While smoothing is needed, it will deform any features

Increase λ⇒ lower uncertainty, more smoothing
Compromise between variance and bias

We should choose λ such that the bias is minimized depending on the size of
features we are interested in

Need to quantify a relation between λ and the amount of bias
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Smoothing Operator

To see how the regulators deform a feature, let’s pretend that C
(obs)
` has no

random noise and is the result of some feature f (actual):

C
(obs)
` =

∑
i

T i` f
(actual)
i + C`(P0) (8)

The recovered feature is:

f
(recovered)
i =

∑
j,k

[I−1λ,α]ijI
jkf

(actual)
k =

∑
j

A j
i f

(actual)
j (9)

The operator A j
i acts as a low-pass filter

Roughly speaking

A =
1

I + R
I ∼ 1

1 + λ ∂4

∂κ4

fourier trans.−−−−−−−−→ 1

1 + λω4
(10)

The action of this filter on an impulse signal (f(κ) ∝ δ(κ− κ0))

f (recovered)(κ) ∼ e−
(κ−κ0)2

2
√
λ (11)
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Impulse Response

The impulse response width ∆κirw is the standard deviation of the delta
function response to the smoothing operator A j

i

∆κirw is a measure of how much a feature is smeared out by the
smoothness penalty
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Error Versus Bias

The error in our estimate of
the best fit feature will
depend on the regulators:

σ2
fi = [I−1λ,α · I · I

−1
λ,α]ii (12)

By decreasing λ we reduce
the bias, however, this
increases the error

The thinner the feature, the
taller it must be to detect it
without significantly
deforming the signal

λ 5× σ̄ ∆κirw
101 0.30 0.04
102 0.18 0.05
104 0.07 0.11
106 0.03 0.46
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Including the Cosmological Parameters

In general, the PPS is correlated with the cosmological parameters
h,Ωch

2,Ωbh
2, τ, .... Thus we need to find the best fit PPS and cosmological

parameters, simultaneously.

The linear dependence of the C`’s on P (k) allows us to find the fisher
density analytically, making a Newton-Raphson the best (and quickest)
approach to finding the best fit PPS

The complicated dependence of the C`’s on the cosmological parameters
requires us to estimate the fisher density numerically, which makes a
Newton-Raphson approach potentially unstable.

Therefore, finding the maximum likelihood with respect to the cosmological
parameters is best done with a non-derivative method such as the downhill
simplex algorithm
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Including the Cosmological Parameters

In order to get the best of both worlds, we define a new function M(Θ) of
the cosmological parameters Θ = {h,Ωch2,Ωbh2}:

M(Θ) = min
f

{
−2 lnL(Θ, f) + fTR(λ, α)f

}
(13)

where, for a given set Θ, the regularized log-likelihood is minimized w.r.t. f
using Newton-Raphson.

The function M is minimized w.r.t. the cosmological parameters using the
downhill simplex method

After each iteration of the Newton-Raphson minimization, the fiducial PPS
P0(k) (As and ns) are updated by finding the best fit power-law through the
current best fit P (k) reconstruction

We haven’t included the reionization depth τ in the set of cosmological
parameters Θ because of it’s near complete degeneracy with As
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Marginalizing the cosmological parameters

Correlations between the PPS and Cosmological sectors will increase the
uncertainty in the PPS reconstruction

A change in the cosmological parameters can be accounted for by a change in
the PPS, Though the reverse is not true

If we wish to account for the uncertainty in the cosmological parameters
Θ = {h,Ωch2,Ωbh2} we must marginalize over them and use the resulting
fisher matrix.

The Fisher matrix of f after marginalizing over Θ is approximately:

I
(marg)
ij =

∑
`,`′

T i` [K``′ −
∑
`1,`2

∑
α,β

K``1

∂C`1
∂Θα

K−1αβ
∂C`2
∂Θβ

K`2`′ ]T
j
`′ (14)

where Kαβ is the fisher information of the set of cosmological parameters Θ.
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PPS Fisher Density (Marginalized)
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Marginalizing the cosmological parameters: Impulse Response

The impulse response is much more complicated after we’ve marginalized
over the cosmological parameters.

The response of an impulse signal is spread out over a much larger range of
scales due to strong correlations

Our previous measurement of bias won’t work here
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Minimum Reconstructible Width

A broad signal is more faithfully reconstructed the wider it is

Define the minimum reconstructible width ∆κmrw at κc as the smallest σ
such that: ∫

dκ|Afκc,σ − fκc,σ|2 ≤ b
∫
dκ|fκc,σ|2 (15)

fκc,σ is a Gaussian centered at κc with standard deviation σ

The smoothing operator A includes the effect of marginalizing over Θ:
A = [I(marg) + R]−1I(marg)

b is a variable that roughly measures the maximum allowed bias in the
response Afκc,σ (We used b = 10−2)
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∆κirw and ∆κmrw

The IRW and MRW
are approximately the
same for
10−3 Mpc−1 < k <
0.1 Mpc−1

At very low and high
k, the MRW is not
defined since there is
no way to satisfy the
bias criterion

This is due to the
fixing prior we have
placed at the ends,
which warps the signal
no matter what the
width
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The Ingredients of Reconstruction

The reconstructions are made by maximizing the likelihood w.r.t. f , and Θ,
using a combination of Newton-Raphson and Downhill Simplex Algorithms

The error on the reconstructed f is obtained from the marginalized Fisher
matrix

The minimum reconstructible width is estimated using the smoothing
operator A = [I(marg) + R]−1I(marg)
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Reconstructions from Planck Data
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Reconstructions from Planck Data

The width of the green boxes represents the minimum reconstructible width

The height of the dark and light green boxes represents the one and two
sigma error, respectively

Grey regions denote areas where the reconstruction bias is so great that the
minimum reconstructible width is undefined

If consistent with a featureless spectrum, boxes should all pass through the
f(k) = 0 line

With a large roughness penalty (λ = 105 and λ = 106) there are no
statistically significant deviations from a featureless PPS

For a lighter roughness penalty (λ = 103 and λ = 104) there is a statistically
significant deviation at k ≈ 0.13 Mpc−1

The size of this local deviation is 3.2σ and 3.9σ for λ = 104 and λ = 103,
respectively
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Look-Elsewhere Effect

Although detection of a nearly 4σ deviation is cause for suspicion we must
remember to “look elsewhere”

If we are looking at deviations from the power-law PPS at a large number of
points, the odds that we find a statistically significant deviation is greater
than if we looked at a fewer number of points

If we look in enough places, we’ll eventually find a statistically significant
deviation

To account for this we sampled a normal distribution with the same
covariance as the plotted error bars and calculated the probability of
obtaining the same number and magnitude of statistically significant
deviations that we obtained in our reconstructions

The probability of getting same statistically significant deviations for λ = 104

was 1.74% or 2.4σ
The probability of getting same statistically significant deviations for λ = 103

was 0.21% or 3.1σ

Even when the look-elsewhere effect is accounted for we still find a 3σ
significance of the deviation

Could be nothing, but 3σ should make us pause
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Can We See This Deviation in the C`’s
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By looking at the residuals in the C`’s obtained from our best fit PPS with
λ = 103, we find a possible source of the large deviation at ` ∼ 1800

If we place a test feature in an otherwise featureless PPS with the same size,
shape and position as the large deviation we observed in the Planck
reconstructions we find that the C` residuals show a deviation at ` ∼ 1800
similar to the one we see in the Planck C` residuals
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Conclusions

Reconstructing the PPS from the C`’s is ill defined without a smoothness
penalty

The smoothness penalty introduces bias in the reconstruction

This bias is measured in terms of a smoothing length that specifies the
minimum width a feature must be to be (minimally) unbiased

By adjusting λ we can search for features of a give minimum size

Reconstructing the PPS from Planck data shows a statistically significant
deviation at small scales

Even when accounting for the look-elsewhere effect, the significance of this
deviation is still over 3σ

The C` anisotropy spectrum also shows a large residual around ` ∼ 1800,
which is very likely the source of the deviation in the PPS reconstruction

The large C` residual at ` ∼ 1800 is most clearly seen in the 217 GHz
channel
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