Void magnetic field & its primordial origin in inflation

Based on T.F.& Shinji Mukohyama [arXiv:1205.5031]; T.F.& Shuichiro Yokoyama [arXiv:1306.2992]. Nov/13th/2013 CosPa@Pagoda hote Kavli IPMU/Tokyo Univ. Tomohiro Fujita

Plan of Talk

PRESENTATION

Observation

 10^{12} G 10^9 G 10^{6} G 10^3 G 1 G 1mG $1\mu G$ 1nG 1pG 1fG

Unified Scenario

Primordial MF

Structure formation

Plasma motions in galaxy & cluster **amplify** MF

 $\mathrm{B}_g\sim 10^{-5}~\mathrm{G}$

Void region

No amplification, But only dilution.

 $\mathbf{B}_{v} \ll \mathbf{B}_{g}$

CMB: [Kosowsky+(2005), Kahniashvili+(2005), Kristiansen+(2008), Kahniashvili+(2010), Ichiki+(2011), Shiraishi+(2012), Shaw+(2012)] Photon-graviton conversion: [Chen(1995), Chen & Suyama(2013)] Big Bang Nucleosynthesis: [Yamazaki+(2012), Kawasaki & Kusakabe(2012)] CMB distortion [Miyamoto+(2013), Kunze & Komatsu(2013)]

Blazar observation puts

 $B_{\rm Mpc} \gtrsim 10^{-15} G$

Blazar flux: [Neronov+(2010), Tavecchio+(2010), Taylor+(2011), Essey+(2011), Dermer+(2011), Huan+(2011), Dolag+(2011), Arlen+(2012), Ackermann+(2013), Finke+(2013)] Blazar flare : [Takahashi+(2011), Takahashi+(2013)]

Plasma instability discussion : [Bronderick+(2012), Venters+(2012)]

Strength of PMF

Target range is

$10^{-15}G < B_{Mpc} < 10^{-9}G$

Model has to generate PMF which dilutes into this range.

Models

Model examples

•Kinetic Coupling [Ratra(1992)] $I^{2}(\phi)F_{\mu\nu}F^{\mu\nu}$

Axial Coupling [Garretson+(1992)]

 $+\frac{\widetilde{\phi}}{M} F_{\mu\nu}\widetilde{F}^{\mu\nu}$

Non-minimal Coupling [Turner&Widrow(1988)]

 $+\xi RA_{\mu}A^{\mu}$

Higgs Coupling [Finelli+(2001)]

$$+e^2\phi^2A_{\mu}A^{\mu}$$

Z boson projection [Dimopoulos+(2001)]

$$A_{\mu} \simeq Z_{\mu}^{\inf} sin 2\theta_{w}$$

etc...

Kinetic coupling model 1

[Ratra(1992), Lemoine+(1995), Bamba+(2004), Martin+(2008)]

Kinetic coupling model 2 [Ratra(1992), Lemoine+(1995), Bamba+(2004), Martin+(2008)] $I \propto \eta^n$ EoM $(IA_k)'' + [k^2$ $](IA_k)=0$

Kinetic coupling model 2 [Ratra(1992), Lemoine+(1995), Bamba+(2004), Martin+(2008)] $I \propto \eta^n$ EoM $(IA_k)'' + [k^2 - \frac{n(n-1)}{n^2}](IA_k) = 0$

• $A_k (\propto \eta^{1-2n})$ grows even in super-horizon!

Kinetic coupling model 3

[Ratra(1992), Lemoine+(1995), Bamba+(2004), Martin+(2008)]

EF & MF are given by

$$P_E(k) \equiv \frac{2|A_k|^2}{a^4}, \quad P_B(k) \equiv \frac{2k^2A_k|^2}{a^4}$$

Resultant MF at present is (instant reheating)

 $\mathcal{P}_B^{1/2} \sim 10^{23n-80} G \left(\frac{\rho_{\inf}^{1/4}}{10^{16} \text{GeV}}\right)^{n-1} \left(\frac{k}{1Mpc^{-1}}\right)^{3-n}$

Model examples

•Kinetic upli [Ratra(1992)] I² (* F^µ

Axial Coupling [Garretson+(1992)]

 $+\frac{\widetilde{\phi}}{M}F_{\mu\nu}\widetilde{F}^{\mu\nu}$

Non-minimal Coupling [Turner&Widrow(1988)]

 $+\xi RA_{\mu}A^{\mu}$

Higgs Coupling [Finelli+(2001)]

$$+e^2\phi^2A_{\mu}A^{\mu}$$

Z boson projection [Dimopoulos+(2001)]

$$A_{\mu} \simeq Z_{\mu}^{\inf} sin 2\theta_{w}$$

etc...

Problems

2 Problems

Back reaction problem

Induced **ζ** problem

(2)

Demozzi, Mukhanov & Rubinstein(2009)

In $I^2 FF$ model with $I \propto \eta^n$,

 $B_{Mpc} \lesssim 10^{-32} \mathrm{G}$

One model with specific *I* died. But how about the others??

Is it possible to avoid BR problem?

Fujita & Mukohyama (2012)

Model independent upper bound on ρ_{inf} from BR problem.

 $\rho_{\text{inf}}^{1/4} < 6 \times 10^{11} \text{GeV} \left(\frac{B_{Mpc}}{10^{-15}G}\right)^{-2}$

Fujita & Mukohyama (2012)

 $\rho_{\text{inf}}^{1/4} < 6 \times 10^{11} \text{GeV} \left(\frac{B_{Mpc}}{10^{-15} G}\right)^{-2}$

>
$$r < 10^{-19} \left(\frac{B_{obs}}{10^{-15}G}\right)^{-8}$$

Inflation can't generate MF and GW at once.

For inflationary Magnetogenesis, Low energy inflation is favored.

Ferreira, Jain & Sloth (2013)

In *I²FF* model with TeV scale inflation and delayed onset of MF generation,

10^{-14} G is possible

Back reaction problem

ufП

Back reaction problem

Ferreira, Jain & Sloth (2013)

In *I²FF* model with TeV scale inflation and delayed onset of MF generation,

10^{-14} G is possible

2 Problems

Back reaction problem

Induced **ζ** problem

Induced ζ problems

[Suyama & Yokoyama(2012), Barnaby+(2012), Bartolo+(2012),Shiraishi+(2013), Giovannini(2013)]

Generated EM

Isocurvature pert.

Sources

Induced adiabatic pert. Observed value

Suyama & Yokoyama (2012)

Induced $\mathcal{P}_{\zeta}^{EM} < \mathcal{P}_{\zeta}^{obs}$

 $p_{\text{inf}}^{1/4} > 3 \times 10^{13} \text{GeV} \left(\frac{B_{\text{obs}}}{10^{-15} G}\right)^{1/2}$

So is it completely Impossible??

What about Ferreira's model?

Constraint on Ferreira's model $B_{Mpc}[G]$ Preliminary)bs 10^{-6} 10^{-16} 10^{-26} **Cur** 10^{-36} Inf 10^{-46} 5 2 3 6 4

No model survives!

Who makes viable one?

Remark

Perhaps we should consider dynamics after inflation...

Current may transmits energy from EF to MF (?)

But how to compute it?

Summary

Plan of Talk

PRESENTATION

(1

The origin of PMF is unknown. Void MF Observation tells PMF diluted into $10^{-15} - 10^{-9}$ G.

Models which generate PMF during Inflation suffer from 2 problems; Back reaction & induced ζ_{EM} problems.

Single slow-roll \Rightarrow No go result. No viable model even in non-SSR. Avoid ζ_{EM} or post-inflation dynamics.

Thank you!