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Dark matter:
 

the most concrete 
evidence there is new particle 
physics to be discovered.
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 Thermal DM (i.e. a WIMP)
well motivated theoretically & good chance of detection 

 Asymmetric Dark Matter


 
motivated by ΩDM

 

≈5Ωb

 Axions


 
motivated by QCD strong CP 

 Sterile neutrinos


 
new physics also needed in neutrino sector

 DM with only gravitational interactions
Nightmare scenario!

Some DM candidates
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(1) Assume dark matter 
initially in thermal equilib.:

(2) Universe cools and the 
non-relativistic DM is 
Boltzmann suppressed:

(3)“Freeze out”
 

at m/T~20.
Relic density fixed:




v
constN


1.

TmemTN /2/3)(~ 

 Final dark matter abundance proportional to 
inverse of the annihilation cross section.

Thermal Relic Dark Matter

ff  
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“WIMP Miracle”
 The thermal relic picture sets the “natural scale”

 for the dark matter annihilation cross section:

 Suggests electroweak-scale parameters since:


 

1)A compelling argument, given we have other reason to 
expect new physics at the GeV-TeV

 
scale.

 2) Realistic prospects of detection:
-

 
annihilation signals (indirect detection)

-
 

nuclear recoils (direct detection)
-

 
monojets+missing

 
ET (colliders)

 implies0.2 2

1326
2

2
scm 10~

)GeV 100(
~ v
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“WIMPless
 

Miracle”
 

?


 
Actually, thermal freezeout does not single out the 

electroweak scale.  The relic density simply sets

 we can choose any m or g, provided we fix the ratio

Note:  Partial wave unitarity
 

bounds the cross section 


 

rules out thermal relic DM for very large masses.

TeV 300        mvv thermal
Griest & 
Kamionkowski

Feng & 
Kumar
2008
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Effective operators
A model independent description of DM 
interactions with SM particles:

Advantages:
-

 
Generic description

- Valid for direct detection where momentum     
transfer is very small

Disadvantages:
-EFT description can break down at colliders 
where q2 is large.

-
 

No good for light mediators

J.Goodman et al.
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Bounds on EFT operators are becoming quite constraining!

Relic density 
upper limit

 
on Λeff

 

(to prevent overclosure)

Direct detection, collider, and indirect detection


 
lower limits

 
on Λeff

For many operators, these limits are in conflict!

Possibilites: 
-one of the remaining operators is correct
-non-trivial flavour

 
structure in DM couplings

-EFT description inadequate



Nicole Bell, CoEPP, The University of Melbourne                 CosPA, Hawaii, 12 Nov 2013

10Buckley 
1104.1429
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K. Cheung et al,
1201.3402



Nicole Bell, CoEPP, The University of Melbourne                 CosPA, Hawaii, 12 Nov 2013

12

The dominant DM production process at the LHC may be:

But this process is invisible
 

to the detectors (DM stable, 
weakly interacting) 

We need visible particles in the final state, to recoil against 
some missing transverse energy, 

e.g.

qq  

particle SM single   qq

Dark matter visible as high pT state 
+ missing ET

Dark matter at the LHC
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 mono-jet (gluon) 
–

 
high cross section & large backgrounds

 mono-photon 
–

 
complementary to (but less constraining than) monojets

 mono-Z (Bell et al., 1209.0231; Carpenter et al.,  1212.3352)
–

 
complementary to monojets; 

–
 

clean signal

 mono-W (Bai & Tait, 1208.4361)
–can distinguish different couplings to u and d type quarks

 mono-Higgs (Petrov & Shepherd 1311.1511)

Mono-”X”
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CMS mono-jet limits
CMS PAS EXO-12-048
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ATLAS limits from hadronically decaying mono-W and mono-Z
arXiv:1309.4017
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ATLAS mono-jet limits

ATLAS-CONF-2012-084
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EFT bounds can over-estimate
 

constraints on a given model
e.g. Models with light mediators

EFT bounds can under-estimate
 

constraints on a given model
e.g. If DM-SM interaction mediated by a new coloured

 
particle 

the EFT mono-jet bounds are often too conservative. 

EFTs
 

are useful, but have limitations

Importantly:
 

in many UV complete theories, there exists 
other dark sector particles at energy scales accessible to 
the LHC.

 
Either particles with SM quantum numbers, or a 

Z’
 

gauge boson, see  arXiv:1003.1912
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Breakdown of 
EFT description 
at colliders

G.Busoni et al, 1307.2253
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 Note: scalar charged under SM gauge groups, c~(3,2,1/3), 

(i.e. 
 

and 
 

are analogous to the neutralino and squark. ) 

Example (Mono-Z)

Go beyond an EFT by introducing a mediator. 
Radiation from mediator contributes to mono-X signals.

Bell et al  
1209.0231
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Go beyond an EFT by 
introducting

 
a mediator

E.g. t-channel exchange 
of a scalar.

H.An et al, 1308.0592

See also:
Chang et al. , 1307.8120
Bai & Berger, 1308.0612
DiFranzo et al., 1308.2679

Mediator pair production
Mono-jets



Nicole Bell, CoEPP, The University of Melbourne                 CosPA, Hawaii, 12 Nov 2013

21

Co-Annihilation
EFTs

 
assume a separation of scales 

 
enables all dark sector 

particles (other than the DM itself) to be integrated out.  May 
not be valid.

Consider models in which there are 2 (or more) dark sector 
particles of similar mass, {χ1

 

, χ2

 

}, with m1

 

≈
 

m2.

-
 

Relic density controlled by co-annihilation of χ1

 

and χ2
-

 
χ2

 

decays to χ1

 

with lifetime << age of universe

Generalise
 

the EFT description:

Bell, Cai & Medina, 
in preparation



Nicole Bell, CoEPP, The University of Melbourne                 CosPA, Hawaii, 12 Nov 2013

22

If Λ11 >> Λ12 Λ22

 


 

Self annihilation of χ1

 

is suppressed

Relic density
- Co-annihilation of χ1

 

and χ2 controls the relic density

Indirect detection
Suppressed by large Λ11 

Direct detection
χ1

 

+ N 
 

χ2 + N  cannot happen unless mass gap is tiny

Colliders 
-Monojets:     pp 

 
χ1 χ2 + jet 

-New signals:  pp 
 

χ1 χ2 
 

χ1 χ1 + SM
A monojet

 
signal may be seen in a region of parameter space for 

which self-annihilating dark matter has already been ruled out by 
direct detection.

  22
3/2

12
2/3/

11 )/1(/1  mmemme TmTm
eff  
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Collider signals of co-annhilation
Monojets:
pp 

 
χ1 χ2 + jet 

This will look identical to a 
standard monojet

 
if the SM 

particles produced by χ2 decay 
are very soft.

χ2 decay signal:
pp 

 
χ1 χ2 

 
χ1 χ1 + SM 

χ2 
 

χ1 + l+l-
or   χ2 

 
χ1 + qqbar

Both could be observed with 
forthcoming LHC data!

χ2

q

q

- χ1

Bell, Cai & Medina, in preparation
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If we see a MET signal that can be attributed to a new weakly 
interacting particle,

 
we won’t know if it is really the dark matter 

without other information.

Is is
 

stable?
DM must be stable on a timescale of order 10 Gyr.  Colliders will 
tell us about stability on only nanosecond

 
timescales (long enough 

to escape the detector).

Does it contribute all the relic density? 


 
Need to measuring its couplings to all SM particles.

Consistent with direct and/or indirect detection?


 
E.g. Do we see a gamma ray line at the same energy as the DM 

mass inferred at the collider?   

DM and missing ET
 

at colliders
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

production (collider searches)


annihilation (indirect detection)

scattering
(direct 

detection)



Detecting Dark Matter
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Expand annihilation cross section in velocity, v:

<v>
 

=  a  +  bv 2
 

+ O(v 4)

a --
 

from s-wave (L=0) annihilation
b --

 
both s-wave and p-wave (L=1) contributions

In galactic halos, v~ 10-3c, so only the s-wave contribution 
is significant.

Dark matter annihilation

Typically assume annihilation cross section dominated by 
2-body final states.

But if 2-body final states are suppressed (e.g. helicity
 suppression of s-wave) 

 
3-body final states important.
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Dark matter = gauge-singlet Majorana fermion = 
Example of suppressed annihilation

SUSY analogue

Annihilation of bino dark 
matter to fermions via  
exchange of sfermions

s-wave is helicity
 

suppressed 
due to mismatch of fermion

 chirality
 

and allowed spin state.
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Lifting the suppression (photons)

Final state radiation (FSR) Virtual internal 
bremsstrahlung (VIB)

Effect most pronounced for near-mass 
 

(DM) and 
 

(propagator)
(i.e. coincides with the co-annihilation region)

Emission of a photon can lift the suppression
Bergstrom, PLB 225, 372, 1989; Flores, Olive, Rudaz, PLB 232, 377, 1989;
Bringmann, Bergstrom, Edsjo, 2008;  Barger, Gao, Keung, Marfatia, 2009,

3 final states particles 
 

fermions no longer required to 
be in disallowed spin state 

 
helicity

 
suppression removed
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Bergstrom, Bringmann, Edsjo, PRD 2008 

Bringmann, Huang, Ibarra, Weniger, arXiv:1203.1312

Bremsstrahlung
 

signals 
Gamma rays Positrons

FERMI gamma ray line at ~130GeV 
fit by bremsstrahlung signal with 
m~150GeV, arXiv:1203.1312
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electroweak (W,Z) bremsstrahlung

 Radiating a W or Z boson can also lift the suppression 



 
distinct phenomenology: W and Z bosons decay to 

charged leptons, neutrinos, gammas, and hadrons
 significant hadron production even for “leptophillic” 
models

Bell, Dent, Jacques & Weiler, PRD 2010.

Bell, Dent, Galea, Jacques, Krauss & 
Weiler, PLB 2011, arXiv:1104.3823

Ciafaloni, Cirelli, Comelli, De Simone, 
Riotto & Urbano, JCAP 2011

χ

χ

f

-
f
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Cross-section ratio 
of 3-body:2-body 
final states


 
Enhancement of up 

to 3 orders of 
magnitude

Rate W-brem
 

> γ-brem
 (except near mW

 threshold)

(v~10-3c, Galactic ha

Bell, Dent, Galea,  Jacques, 
Krauss & Weiler, arXiv:1104.3823
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Annihilation spectra and cross section limits

p

γ

ν
e Bell, Dent, Jacques & 

Weiler, arXiv:1101.3357

Bremsstrahlung
 

can’t 
make significant 
contribution to e+ flux, 
without overproducing 
antiprotons
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Kachelriess, Serpico and Solberg 
PRD 2009.

Models with no helicity 
suppression

EW-brem still occurs, 
but is subdominant

W/Z decays ensures  
there is at least a minimal 
yield of hadrons, photons, 
charged leptons and 
neutrinos. 

neutrinos-only 


 
̄ (+ W/Z brem)

electrons-only 
e+e- (+ W/Z brem)
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Higgs Bremsstrahlung
Can also open up an s-wave by radiating a Higgs boson!
F.Luo & T.You, arXiv: 1310.5129

λD
 

=1
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Higgs Bremsstrahlung
F.Luo & T.You, 
arXiv: 1310.5129
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Linking dark matter and baryogenesis
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Killing two birds with one stone…
Can we connect (i) Relic DM abundance

(ii) baryon-antibaryon
 

asymmetry

Asymmetric 
dark matter

WIMPy
 Baryogenesis

WIMP miracle  

Explain ΩDM
 

≈5Ωb  

Various ideas:  Asymmetric dark matter, WIMPy
 

baryogensis, 
Baryomorphosis, DM assimilation, ……

ADM: Many papers!  See reviews by Petraki and Volkas 1305.4939 and Zurek 1308.0388. 
WIMPy baryogenesis: Cui, Randall and Shuve, 1112.2704; Bernal et al., 1210.0094, 
Bernal et al., 1307.6878; Kumar & Stengel, 1309.1145 
Baryomorphosis: McDonald 1009.3227 Dark matter assimilation: D’Eramo et al., 1111.5615
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WIMPy
 

Baryogensis

Cui, Randall and Shuve, 1112.2704

Require WIMP annihilation satisfy the Sakharov conditions
 a baryon asymmetry can be generated from DM annihilations

DM annihilation creates 
asymmetry in exotic 
antibaryons, then 
sequestered in sterile 
sector

Asymmetry in exotic 
antibaryons, which decay 
to SM baryons
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Asymmetric Dark Matter

then    nDM
 

≈
 

nb
 

(assuming complete asymmetry)             

and      mDM
 

≈
 

5mb
 

≈
 

5 GeV

Assume DM density set by a matter anti-matter 
asymmetry of the same size as the baryon asym.

ADM replaces
 

ΩDM≈ Ωb
 

puzzle, with a mDM
 

≈
 

mb
 

puzzle

Motivation:
 

ΩDM
 

≈5Ωb
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Asymmetric Dark Matter
Requirements:

 A mechanism to
simultaneously create B(visible) and B(dark) asymmetries, or
create an asymmetry in one sector and communicate it to the other.


 

A sufficiently large DM annihilation cross section to annihilate the 
symmetric part (to leave only particles and no antiparticles).

Implications:

 Light DM. 
 No indirect detection (nothing to annihilate with)


 
The physics that connects the dark and visible sectors may or may 

not be at an experimentally accessible energy scale.


 
Large annihilation cross section means either sizeable couplings 

with SM particles, or else new light degrees of freedom.
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ADM annihilation cross section
WIMPs

 
-

 
relic density set by annihilation cross section

ADM
 

–
 

relic density set by asymmetry, provided  
annihilation cross section is big enough to remove the  
symmetric part

 
still need a WIMP-like cross section!

Fractional asymmetry:

For r∞
 

< 0.1, require:

Graesser et al., arXiv:1103.2771
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ADM and indirect detection
No indirect detection if r∞

 

=0.  

For r∞
 

≠
 

0, 
suppression factor of:

Lin et al., arXiv:1111.0293

Need small r∞
 

to satisfy 
CMB indirect detection 
constraints
 Lower limit on σ
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ADM and neutron stars
DM-nucleon scattering 

 
capture of DM by neutron stars

ADM (or other non-annihilating DM) would accumulate 
with no cap, eventually causing collapse to a black hole.

Detailed constraints depend sensitively on whether:
-fermionic/bosonic DM
-repulsive/attractive DM self interactions
-possible annihilations or co-annihilations 

Kouvaris and Tinyakov;  McDemott Yu and Zurek; Guver, Erkoca, Reno and Sarcevic, 
Bramante, Fukushima and Kumar;  Bell, Melatos and Petraki; Bertoni, Nelson and Reddy. 
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Capture -
 

DM-nucleus scattering

Thermalisation
 

–
 

energy loss from further scattering, 
DM accumulates in a small thermal sphere.

Self gravitation (and BEC formation) –
 

occurs when 
enough DM has accumulated to overwhelm the NS gravity 
(in the small thermal sphere).  Bosonic

 
DM can form a 

Bose-Einstein condensate 
 

self gravitation occurs sooner

Collapse –
 

when number of self gravitating DM particle 
exceeds Chandrasekhar limit.

The black hole grows by accretion or evaporates

Evolution of DM in a neutron star
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Chandrasekhar limits
Bosons:

Bosons 
+ repulsive self interactions 

Self interactions dominate if:

Fermions:

Fermions
+ attractive self interactions 

 
decrease N 

Bramante et al. 
1310.3509
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Self interactions are inevitable…
A λχ4 term cannot be forbidden.  Moreover, if DM 
scatters from nucleons, a λχ4

 
term must be generated. 



But this is conservative, in many models the DM-nucleon 
and DM-DM cross section will be of similar size.

Bell, Petraki and Melatos: 1301.6811 
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on the DM-nucleon scattering cross section

Blue – no self interactions
Red – self interactions

Bell, Petraki & 
Melatos: 1301.6811 
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Bounds on the DM-nucleon co-annihilation cross section

Blue – no self interactions
Red – self interactions

Bell, Petraki & 
Melatos: 1301.6811 
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Bounds on the DM self-coupling

Bell, Petraki & 
Melatos: 1301.6811 
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Neutron star bounds on bosonic

 
DM are not applicable

 
if:

Repulsive self-coupling is sufficiently large:

Co-annihilation cross section is sufficiently big:

DM-nucleon scattering cross section is sufficiently small:

This is a very tiny cross section!

OR

OR

Note: Similar result for annihilation cross section –
 

Bramante 1301.0036

Most of the interesting parameter space is not ruled out!
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
 

WIMPs…is this idea compelling, or are we searching 
under the lamp post?  


 

ADM…is the similarity of the dark and visible matter 
densities an important clue, or just a red herring?


 

EFT…useful, but limited in validity.  Need more collider 
analyses of UV complete models.


 

Colliders…stay tuned to LHC monojet
 

searches AND 
other exotics searches

Outlook
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