A report on optical contact tests

K. Suzuki (Nagoya)

on behalf of

A. Schwartz (Cincinnati), M. Rosen (Hawaii), T. Kohriki (KEK), M. Hachimine, T. Hayakawa, Y. Horii and K. Inami (Nagoya)

Question

- How do we ensure the good and stable optical coupling between a prism end and PMT surfaces?
 - "Cragille Fused Silica Matching Liquid Code 06350"
 - ➤ http://www.cargille.com/FS06350.pdf
 - "ELJEN Technology EJ-550 Optical Grade Silicon Grease"
 - http://www.eljentechnology.com/index.php/joomla-overview/accessories/94-ej-550
 - Optical cookie
 - > R&D on the ones custom-made by Inami-san.
- From the FNAL beam test experiences, "Code 06350" seems difficult to use for 2x4 PMT unit.
 - Due to the low viscosity and imperfect surface alignment.

Product	Material	Viscosity	Radiation tolerance	Pros	Cons
Code 06350	Hydrocarbon liquid (aliphatic and alicyclic)	Low	Fine	Seems to be the best for the optical matching to a fused silica.	PMT surfaces have to be aligned precisely and would be evaporated.
EJ-550	Silicon grease (methyl-phenyl-polysiloxane)	High	Fine	High-viscosity enough to fill the imperfect alignment of PMT surfaces.	Bubble elimination is necessary.
Cookie	Silicon rubber	n/a	(Fine)	Convenient to deal with handling and the alignment.	Bubble elimination is necessary.

EJ-550 on a 2x4 front-end module (1)

- EJ-550 has tested on a 2x4 frontend module to see if it works.
 - Using a test bench, the "FNAL expansion block", a mock-up of a 2x4 front-end module and SL10 mock-ups.
 - The test bench was made by K.S. with the great help of Kohriki-san, Saitoh-san (KEK) and Kawai-san (Nagoya).
 - The front-end module mock-up was made by customizing a bad module used at the FNAL beam test.
 - The surface alignment of eight SL10 mockups were done by pressing the unit against an aluminum dummy block; the alignment looks reasonably good (within ~100 μm).

EJ-550 on a 2x4 front-end module (2)

- Coupling procedure
 - Put EJ-550 enough at around the center region of a PMT surface.
 ➤ On individual PMTs.
 - Pressed the module mock-up to a block end gradually.
 - ➤ EJ-550 spread over the PMT surfaces eliminating air gaps.

EJ-550 on a 2x4 front-end module (3)

- Coupling procedure (cont'd)
 - Translated the module mock-up horizontally (mostly) and vertically (a little bit) to eliminate remaining bubbles.

EJ-550 on a 2x4 front-end module (4)

- Finally air gaps and large bubbles were eliminated.
 - Remaining bubbles seemed too small and few to be harmful.
 - The module mock-up was translated horizontally by ~90 mm in total.
 - Less than naïve expectation, which is \pm half of the module width (\pm ^60 mm).
 - For the FNAL prototype module, at least one side plate of the readout chassis would need to be removed to translate the last front-end module.
 - ➤ What do we do for the real detector where the side plate cannot be removed?
- Is the grease thin enough regarding the transmittance?
 - Need to confirm it. Final Electro-mechanical Packing Task Force

EJ-550 on a 2x4 front-end module (5)

- After around an hour, large bubbles appeared.
 - Probably because the pressure at the contact was relaxed.
 - The module mock-up was kept as it was without any supports.
 - Hope this would not happen in a front-end chassis.
 - ➤ Positioning screws and/or plungers at the backward end (to keep pressing PMTs) would solve this issue.
- After putting the grease twice, the contact stays (at least) for a few days.
 - Enough amount of grease seems helpful.
- Visual inspection through the top face of the block works well.
 - Expected to work through the tilted face (17,2°) of a prism, too_{Final Electro-mechanical Packing Task Force}

After putting the grease twice.

13.3.20

Final Electro-mechanical Packing Task Force

Convex-shaped optical cookie (1)

- An optical cookie with a convexshaped surface may be another solution for the optical contact.
 - A conventional optical cookie, which has flat surfaces, seems not applicable since it is very difficult to eliminate air gaps and bubbles when it is used.

Final Electro-mechanical Packing Task Force

