Tidal Forces and the Roche Limit of Planetary Bodies

Yu Xian He PHYS 305

Introduction

 The Roche Limit is the distance at which an orbiting satellite will disintegrate due to the tidal forces exerted on the satellite from the mass it's orbiting

• Tidal force: differential force from the effects of gravity

Fig. 1: Diagram of a planet orbiting around a star http://www.batesville.k12.in.us/physics/phynet/mechanics/gravity/lab/excel_orbits.htm

Equations

Fig 2: Gravitational forces between two masses http://en.wikipedia.org/wiki/Roche_limit

Fig. 3: Diagram describing the formation of rings due to Roche Limit 5

Program Algorithm

 Define constants for G, M, initial x and y positions, and initial x and y velocity components for a two body system (e.g. Titan and Saturn)

Can increase/decrease initial constants by a percentage of the original

Program Algorithm

 Use Runge-Kutta second order (RK2) method to plot an orbit

$$\frac{dv}{dt} = -\frac{GM}{r^2} \qquad \qquad \frac{dv_x}{dt} = -\frac{GMx}{r^3} \\ \frac{dv_y}{dt} = -\frac{GMy}{r^3}$$

• Plot results and compare

Fig 4: Orbit of Mimas with distance reduced by 75%, 50%

Mimas

- x0 = 185,520 km, v0 = 14.32 km/s [1]
- Density = 1148 kg/m^3 [1]
- Roche limit is 50787.68 km
- Too small and beyond Saturn's orbit
- Graph shows that Mimas will eventually crash into Saturn and probably won't break up to form rings

[1] http://alumnus.caltech.edu/~marcsulf/saturn/mimas.html

Orbits of Pan

Fig 5: Orbits of Pan with distance reduced by 75%, 50%

Pan

- x0 = 133,583 km, v0 = 16.9 km/s [2]
- Density = 420 kg/m^3 ± 150 [2]
- Roche limit is 71,010.5 km
- If the maximum orbital distance is decreased by 75% at 100,187.3 km and keeping v0 at 16.9 km/s, Pan reaches its Roche limit and will break up
- It is known as a "ring shepard"

Thoughts/conclusion

 Gives quantitive data for orbital paths, which allows visualization of bodies relating to the Roche limit

• The Roche limit is dependent on the densities of the primary and the orbiting satellite