Tidal Forces and the Roche Limit

Yu Xian He PHYS 305

Introduction

- Tidal Force: a differential forces that arises from the effects of gravity
- Cause tides and changes sea level
- Roche Limit: distance at which an orbiting satellite will disintegrate due to the tidal forces exerted on the satellite from the mass it's orbiting

Introduction

• Gravitational force:

$$F_g = -\frac{GMm}{r^2}$$

• Tidal force:

$$F_t = \frac{2GMur}{d^3}$$

• Roche limit:

$$d = R \left(2 \frac{\rho_M}{\rho_m} \right)^{\frac{1}{3}}$$

http://en.wikipedia.org/wiki/Roche_limit

Main Program

- Plot out orbit of satellite
- Allow user-defined values for mass *m* of satellite and distance *r* between objects
- Use Runge-Kutta method to predict orbits

dv		GM			
dt		r^2			
dv_x		GMx	dv_y		<i>GMy</i>
dt	=	$-\frac{1}{r^{3}}$,	dt	= -	r^3

Sample Orbital Plots

http://www.batesville.k12.in.us/physics/phynet/mechanics/gravity/lab/excel_orbits.htm

Other Features

- Find the Roche Limit distance d from user-input values
- Replot this distance into our orbital plot graph and compare
- Error and uncertainty? Compare RK2 with RK4

Status/Schedule

- Current project status: I have the algorithm down
- Need to setup RK method for orbits
- If possible, do a better, graphical display of orbits