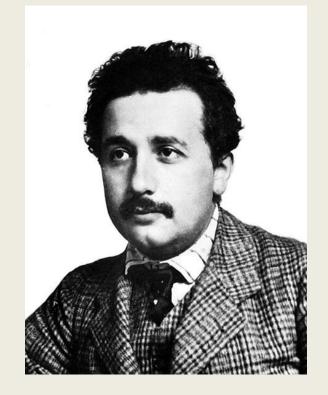
An study of relativistic energy, momentum, and particle colllisions

Natalie Nagata Kernel Review PHYS 305: Computational Physics


Overview

- Background
- Objective
- Project Approach
- Results (thus far)
- Discussion
- Further work

Background

 1905 ("Annus Mirabilis", the Miracle Year!)

 Albert Einstein—from patent office clerk to science rockstar!

Special Relativity

• Postulate 1

 The laws of physics remain the same in all inertial frames

• Postulate 2

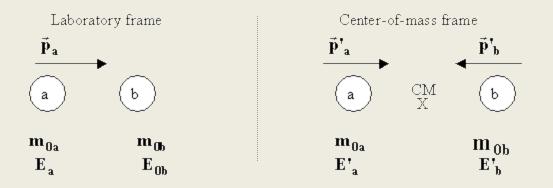
 $\,\circ\,$ The speed of light is invariant in all inertial frames

• What does this mean???

Time Dilation and Length Contraction

• For a fixed frame S and a moving frame S' with velocity v:

$$T = \frac{T_0}{\sqrt{1 - \frac{v^2}{c^2}}} = T_0 \gamma$$


$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}} = \frac{L_0}{\gamma}$$

• Counterintuitive ideas

Objective

- Show the relationship between relativistic momentum and energy
 - \circ Lab frame vs CM frame
 - Magnitude and scale comparison using different masses (protons, electrons, etc)

$$\mathbf{p_{a}}' = \frac{\mathbf{p_{a}} - \frac{\mathbf{v_{cm}}}{c^{2}} \mathbf{E_{a}}}{\sqrt{1 - \frac{\mathbf{v_{cm}}^{2}}{c^{2}}}}; \qquad \mathbf{p_{b}}' = \frac{\mathbf{p_{b}} - \frac{\mathbf{v_{cm}}}{c^{2}} \mathbf{E_{b}}}{\sqrt{1 - \frac{\mathbf{v_{cm}}^{2}}{c^{2}}}}; \qquad \mathbf{E_{a}}' = \frac{\mathbf{E_{a}} - \mathbf{p_{a}} \mathbf{v_{cm}}}{\sqrt{1 - \frac{\mathbf{v_{cm}}^{2}}{c^{2}}}}; \qquad \mathbf{E_{b}}' = \frac{\mathbf{E_{b}} - \mathbf{p_{b}} \mathbf{v_{cm}}}{\sqrt{1 - \frac{\mathbf{v_{cm}}^{2}}{c^{2}}}};$$

Fig. 1 Two-particle collision observed in lab and CM frames

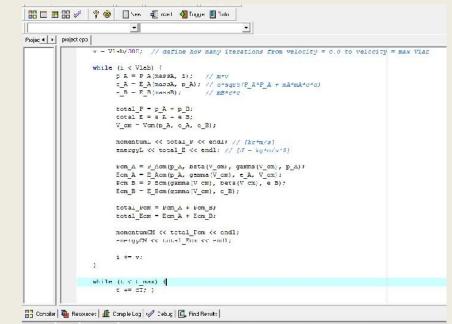
http://teachers.web.cern.ch/teachers/archiv/hst2002/bubblech/mb itu/applications_of_special_relativi.htm

Objective

 Graphically calculate and display the minimum threshold energies in some particle collisions

 Necessary for the creation of certain particles

Project Approach

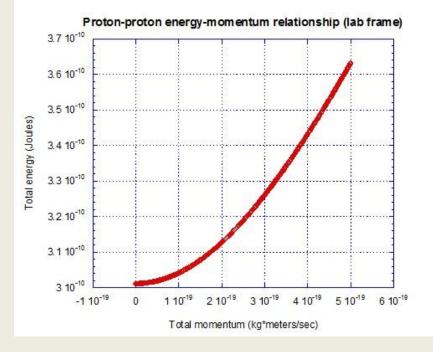

- Defining constants
- Defining functions for momentum and energy
 - Functions passing functions as parameters (BE CAREFUL!)

	_	•
c () project.cpp		
// cot	ISTANTS	
		// speed of light [m/s]
double		// conversion of kg to eV
double		// conversion of kg to MeV
	m electron = 9.1095e-31;	
	m proton = 1.6726e-27;	
	m_neutron = 1.6749e-27;	
		// muon mass [kg]
double	beta(double v)	{ return v/c; }
double	gamma (double V)	{ return 1./sqrt(1 (V*V)/(c*c)); }
// Ene	ergy, momentum functions	
double	P_A(double m, double v)	{ return m*v; }
double	E_A(double mA, double P_A)	{ return c*sqrt(P_A*P_A + mA*mA*c*c); }
double	E_B(double mB)	{ return mB*c*c; }
double	P_Acm(double P_A, double be return gamma*(P_A - (E_A/c)	<pre>sta, double gamma, double E_A) { *beta);}</pre>
double	<pre>E_Acm(double P_A, double ga return gamma*(E_A - P_A*Vo</pre>	mma, double E_A, double Vcm) { m);}
double	P_Bcm (double gamma, double return gamma*((-1)*(E B/c)	
double	E_Bcm (double gamma, double return gamma*E B; }	
	Vcm (double P A, double E A	domble F B) /

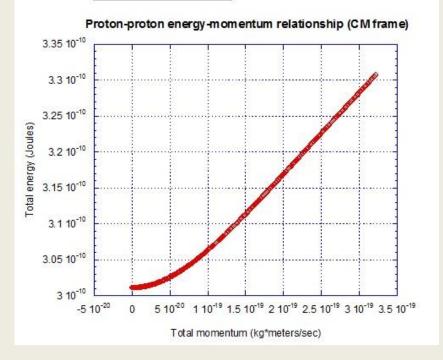
Project Approach

• While-loop

- Calls and defines energy and momentum functions
- Calculates total momentum and energy over a varying velocity from 0 to nearly the speed of light


92.24 Inset 109 Lines in http://www.application.com/

Results (thus far)


Lab frame (0<v<2.99e8)

CM frame (0<v<2.99e8)

Total energy (Joules)

Discussion

- Noticeable variation
 - \circ E_lab / E_CM \approx 1.098
 - \circ E_lab roughly 0.911 times greater than E_CM
- Demonstrates importance of particle colliders using colliding beams (CM frame) instead of colliding with a stationary particle (lab frame)

Discussion

- Some significant things to keep in mind:
 - o Many constants—don't lost track!
 - *Many* functions!
 Need better organization for clarity
 Solution: stuctures? Arrays?
 - o Don't forget—units, units, units!

Project Outlook

- Add asymptotic values of threshold energies needed to create new particles
- Continue with other scenarios of particle collsion
- Experiment with adding new time and position functions

References

- Bitu, R. "Applications of Special Relativity on Particle Physics." http://teachers.web.cern.ch/teachers/archiv/hst2002/bubblech/mbit u/applications_of_special_relativi.htm
- Taylor, John R. "Classical Mechanics". University Science Books. 2005