Rutherford Scattering

PHYS 305 Final Project Jihan Kim

Contents

- Intro
- Theory
- Kernel Description
- Status

Introduction

- Most famous collision experiment
- Thin Gold (Au) sheet & alpha particle
- Create atom model
- Different structure

& thickness of metal

• Test & graph

Theory

$$b = \frac{\kappa q Q}{mv^2} \cot(\frac{\theta}{2})$$
 [2]
Where k=8.99*10⁹ (Nm²/C²),
Q = charge of target,
q = charge , m = mass , v= speed of
projectile

$$\frac{d\sigma}{d\Omega} = \left(\frac{kqQ}{4E\sin^2(\theta/2)}\right)_{[2]}^2$$

Where E = the energy of the projectiles

Kernel Description

```
main(){
    double Radius gold, radius, Alpha_x, Alpha_y, Target,k,c,q,Q,m,b,v,x,y,z;
    double R, theta, phi, angle;
   k=8.988*pow(10.0,9);
    q=2.0*1.602*pow(10.0,-19);
    Q=79.0*1.602*pow(10.0,-19);
   m=6.645*pow(10.0,-27);
   Radius gold=1.441*pow(10.0,-8);
   v=1.77*pow(10.0,7);
    c = k \cdot Q \cdot q/m / pow(v,2);
    R=1000.0;
for (int i=0; i<= 1000000; i++) {</pre>
   x=(double (rand())/RAND MAX-0.5)*20.0;
   y=(double (rand())/RAND MAX-0.5)*20.0;
   theta= atan(y/x);
   b = pow(pow(x,2)+pow(y,2),0.5);
    if (b > 0.1){
        z=pow(pow(1000.0,2)-pow(b,2),0.5);
        fout<< x<<" "<<y<<" "<<z<endl;
    }
    else if (b <= 0.1) {
        phi=acos(b/0.1)*2.0;
        x=R*sin(M PI-phi)*cos(theta);
        y=R*sin(M_PI-phi)*sin(theta);
        z=R*cos(M_PI-phi);
```


3D plot with a simple model.

1,000,000 projectiles were incented with small area

Another expected result

Rutherford differential cross section as a function of angle.

[3]

Status

• Simulate with simple model

4/25	4/26	4/27	4/28	4/29		4/30	5/1	5/2
FINISHING CODING (CREATE ATOM MODEL)			TESTING		PREPARE PRESENTATI ON	CONTINUE CODING (DIFFERENT STRUCTURE)		
5/3	5/4	5/5	5/6		5/7	5/8	5/9	5/10
CONTINUE CODING (DIFFERENT THICKNESS)					FINISH REPORT & PREPARE PRESENTATION			

Reference

- [1]http://tap.iop.org/atoms/rutherford/index. html
- [2] John R. Taylor \Classical Mechanics", University Science Books, 2005, page 557
- [3] http://hyperphysics.phyastr.gsu.edu/hbase/nuclear/rutsca2.html