
Trip to Mars Kernel Review

Introduction

In hopes of future manned missions to Mars

Hohmann transfer technique

Problem

To model a voyage from Earth to Mars

Calculate position and velocity of planets and rocket

Compare planetary data to measured values

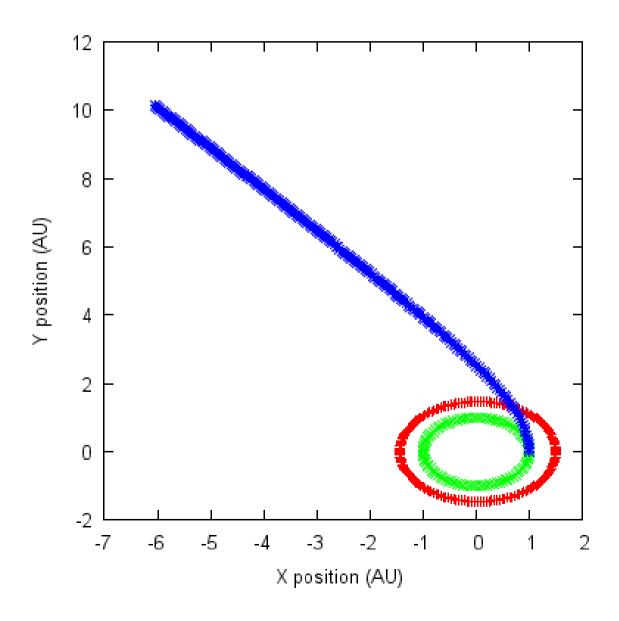
Investigate energies

Solution

 Use Runge Kutta 4 to solve ODEs for position and velocity of bodies

$$\mathbf{F_{12}} = -rac{Gm_1m_2}{r_{12}^3}\mathbf{r_{12}} \qquad \qquad rac{rac{a\mathbf{r}}{dt} = \mathbf{v}}{rac{d\mathbf{v}}{dt} = -rac{GM}{r^3}\mathbf{r}$$

Kernel


Similar to Runge Kutta lab, only force is now gravitational

Implement use of arrays to simplify and better organize coding

 Three functions to check that RK4 calculations: calculate k1-k4, calculates position and velocity, loops RK4 calculation and prints result

Kernel

 Initial tests show rocket flying off into oblivion

Kernel

 Given initial conditions, can get fairly accurate values and modeling

Status

- Factor in additional gravitational effects
- Realistic elliptical orbits
- Pretty animations

And beyond?