$\Delta \mathrm{G} / \mathrm{G}$ results from the Open-Charm production at COMPASS

CHARM2012 - Honolulu

Celso Franco (LIP - Lisboa) on behalf of the COMPASS collaboration

Nucleon spin structure

- Nucleon spin $\rightarrow \frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta \mathbf{G}+\mathbf{L}$
quarks gluons orbital angular momentum (quarks/gluons)

- Assuming the static quark model wave function:

$$
\begin{aligned}
&|\mathbf{p} \uparrow\rangle=\frac{1}{\vee 18} {[2|\mathbf{u} \uparrow \mathbf{u} \uparrow \mathbf{d} \downarrow\rangle-|\mathbf{u} \uparrow \mathbf{u} \downarrow \mathbf{d} \uparrow\rangle} \\
&-|\mathbf{u} \downarrow \mathbf{u} \uparrow \mathbf{d} \uparrow\rangle+(\mathbf{u} \longleftrightarrow \mathbf{d})]
\end{aligned}
$$

$$
\Delta \mathbf{u}=\langle\mathbf{p} \uparrow| \mathbf{N}_{\mathbf{u} \uparrow}-\mathbf{N}_{\mathbf{u}}|\mathbf{p} \uparrow\rangle=\frac{3}{18}(10-2)=\frac{4}{3}
$$

$$
\Delta \mathbf{d}=\langle\mathbf{p} \uparrow| \mathbf{N}_{\mathbf{d} \uparrow}-\mathbf{N}_{\mathbf{d} \downarrow}|\mathbf{p} \uparrow\rangle=\frac{3}{18}(2-4)=-\frac{1}{3}
$$

- $\Delta \Sigma=(\Delta u+\Delta d)=1$
- Up and Down quarks carry all the nucleon spin

Spin crisis

- However, by applying relativistic corrections (and assuming $S U(3)$ symmetry):

$$
\Delta \boldsymbol{\Sigma} \sim 0.60
$$

- Where is the remaining part of the nucleon spin? $\left(\Delta G\right.$? $L_{q(g)}$?)
- Gluons solved the problem of the missing momentum in the nucleon:
- Will they be the solution too for this missing spin? \Rightarrow Measure $\Delta \mathrm{G}$!
- Experimental $\boldsymbol{\Delta} \boldsymbol{\Sigma}$ (from polarised DIS):

Phys. Lett. B447, (2007) 8

$$
\begin{gathered}
\Delta \Sigma=0.30 \pm 0.01 \pm 0.02 \quad \text { (world data) } \\
@ \mathrm{Q}^{2}=3(\mathrm{GeV} / \mathrm{c})^{2}
\end{gathered}
$$

Much smaller than expected... $\stackrel{\Downarrow}{\Downarrow}$ SPIN CRISIS!!!

- Another reason for measuring the gluon contribution to the nucleon spin:
- Due to the gluon axial anomaly, a large $\Delta \mathrm{G}$ could explain why $\Delta \Sigma$ was found so small

The COMPASS Experiment

The polarised beam

The spectrometer and polarised target

The Open-Charm analysis

How to tag a polarised gluon?

- In COMPASS, we can probe directly the gluons using the following interaction:

The photon-gluon fusion process ($L O-P G F$)

Clean PGF signature (no intrinsic charm in the COMPASS kinematics)

Tag PGF events via selection of
Open-Charm mesons

Reconstruction of Open-Charm mesons

- Events considered (resulting from the c-quarks fragmentation):
- $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \quad$ (BR: 4\%)
- $\mathrm{D}^{*} \rightarrow \mathrm{D}^{0} \pi_{\text {slow }}\left(30 \%\right.$ of D^{0} are tagged with a $\left.D^{*}\right)$
- $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$
- $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi^{0} \quad(B R: 13 \%) \rightarrow$ not directly reconstructed
- $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi \pi$ (BR: 7.5\%)
- $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\text {sub }} \pi \longrightarrow$ no RICH ID for kaons $(p(\mathrm{~K})<9 \mathrm{GeV} / \mathrm{c})$
- Selection to reduce the combinatorial background:
- Kinematic cuts: $\mathrm{Z}_{\mathrm{D}^{0}}\left(=\mathrm{E}_{\mathrm{D}}{ }^{0} / \mathrm{E}_{\gamma^{*}}\right)$ and polar angle of kaon in the D^{0} center-ofmass (to reject collinear events with the γ^{*} direction), K and π momentum
- RICH identification: \underline{K} and π ID + rejection of electrons from the $\pi_{\text {slow }}$ sample
- Mass cut for the D^{*} tagged channels $\left(\mathrm{M}^{\mathrm{rec}}\left[K \pi \pi_{\text {slow }}\right]-\mathrm{M}^{\mathrm{rec}}[K \pi]-\mathrm{M}[\pi]\right)$
- Use of a Neural Network to improve the purity of the D^{0} mass spectra

The mass cut for the D^{*} tagged channels

$3.2 \mathrm{MeV} / \mathrm{c}^{2}<\left(\mathrm{M}^{\mathrm{rec}}\left[K \pi \pi_{\text {slow }}\right]-\mathbf{M}^{\mathrm{rec}}[\mathrm{K} \pi]-\mathrm{M}[\pi]\right)<8.9 \mathrm{MeV} / \mathrm{c}^{2}$

1. Improves the Figure-of-Merit $\left(\mathrm{FOM}=\mathrm{N}_{\mathrm{D}^{0}}^{2} / \mathrm{N}_{\text {tot }}\right)$ of the $\mathrm{D}_{\mathrm{K} \pi}^{0}$ resonance by a factor of 3!

- Allows us to reconstruct low-purity channels of low statistics: $\mathrm{D}_{\mathrm{K} \pi \pi^{0}}^{0}, \mathrm{D}_{\mathrm{K} \pi \pi \pi}^{0}$ and $\mathrm{D}_{\mathrm{K}_{\mathrm{sub}}{ }^{0}}$

Invariant mass spectrum: $\mathbf{D}_{\mathrm{K} \pi}^{0}$

(D* tagged and untagged channels)

Invariant mass spectrum: $\mathbf{D}_{{\mathrm{K} \pi \pi^{0}}_{0}^{0}}$ and $\mathbf{D}_{\mathrm{K}_{\text {sul }} \pi^{0}}\left(\mathrm{D}^{*}\right.$ tagged channels $)$

Invariant mass spectrum: $\mathbf{D}_{\text {K } \pi \pi \pi}^{0}\left(\mathrm{D}^{*}\right.$ tagged $)$

Total Number of $\mathbf{D}^{\mathbf{0}}$:

- ${ }^{6} \mathrm{LiD} \rightarrow 57400$

86250

- $\mathrm{NH}_{3} \rightarrow 28850$

Measuring D^{0} asymmetries to extract $\Delta \mathrm{G}$

- The number of reconstructed D^{0} inside each spin configuration of the target, $N_{t}(t=u$, $\mathrm{d}, \mathrm{u}^{\prime}, \mathrm{d}^{\prime}$), can be used to extract an Open-Charm asymmetry from the PGF interaction:

Considering $\mathrm{A}^{\mathrm{bg}}=\mathbf{0}$

$$
\begin{aligned}
A^{\text {exp }} & =\frac{1}{2}\left(\frac{N_{u^{\prime}}-N_{d}}{N_{u_{u}}+N_{\mathrm{d}}}+\frac{\mathrm{N}_{\mathrm{d}^{\prime}}-\mathrm{N}_{\mathrm{u}^{\prime}}}{\mathrm{N}_{u^{\prime}}+\mathrm{N}_{\mathrm{d}^{\prime}}}\right) \\
& =\mathrm{f} \cdot \mathrm{P}_{\mu^{\prime}} \cdot \mathrm{P}_{\mathrm{T}} \frac{\mathrm{~S}}{\mathrm{~S}+\mathrm{B}} \cdot \mathrm{~A}^{\mu, \mathrm{N}}
\end{aligned}
$$

Probability of an event to be a D^{0}
upstream cell downstream cell

equal acceptance for both spin configurations

- In LO-QCD, we have for $\mathrm{A}^{\mu, \mathrm{N}}: \mathrm{A}^{\mu, \mathrm{N}}=\left\langle\hat{\mathrm{a}}_{\mathrm{LL}}\right\rangle \frac{\Delta \mathrm{G}}{\mathrm{G}} ; \hat{\mathrm{a}}_{\mathrm{LL}} \equiv\left(\frac{\Delta \hat{\sigma}_{\mu \mathrm{g}}}{\hat{\sigma}_{\mu \mathrm{g}}}\right)=\frac{\hat{\sigma}_{\mu \mathrm{g}}}{\stackrel{\leftrightarrows}{\leftrightarrows}} \frac{\hat{\sigma}_{\mu \mathrm{g}}}{\stackrel{\leftrightarrows}{\leftrightarrows}}$
- Weighting each event with $\omega=\left[\mathrm{fP}_{\mu} S /(\mathrm{S}+\mathrm{B}) \mathrm{a}_{L}\right]: \rightarrow$ needed for every event

$$
\frac{\Delta \mathrm{G}}{\mathrm{G}}=\frac{1}{2 \mathrm{P}_{\mathrm{T}}}\left(\frac{\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{u}}} \omega_{\mathrm{i}}-\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{d}}} \omega_{\mathrm{i}}}{\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{u}}} \omega_{\mathrm{i}}^{2}+\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{d}}} \omega_{\mathrm{i}}^{2}}+\frac{\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{u}} \cdot} \omega_{\mathrm{i}}-\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{d}}} \omega_{\mathrm{i}}}{\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{u}} \cdot} \omega_{\mathrm{i}}^{2}+\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{d}}} \omega_{\mathrm{i}}^{2}}\right) \text { statistical gain: } \frac{\left\langle\sum_{\mathrm{i}=0}^{\mathrm{N}_{\mathrm{tot}}} \omega_{\mathrm{i}}^{2}\right\rangle}{\left\langle\sum_{\mathrm{i}=0}^{N_{\text {tot }}} \omega_{\mathrm{i}}\right\rangle^{2}}
$$

Open-Charm analysis: Simultaneous extraction of $\Delta G / G$ and $A^{b g}$

- The relation between the number of reconstructed D^{0} and $\Delta G / G$ is given by (for each spin configuration of the target cells):
$\mathbf{N}_{\mathbf{t}}=\mathbf{a} \phi \mathbf{n}(\mathbf{S}+\mathbf{B})\left(1+\mathbf{f} \mathbf{P}_{\mathrm{T}} \mathbf{P}_{\mu}\left[\mathbf{a}_{\mathrm{LL}} \frac{\mathbf{S}}{\mathbf{S}+\mathbf{B}} \frac{\Delta \mathbf{G}}{\mathbf{G}}+\mathbf{D} \frac{\mathbf{B}}{\mathbf{S}+\mathbf{B}} \mathbf{A}^{\mathrm{bg}}\right]\right), \mathbf{t}=\left(\mathbf{u}, \mathbf{d}, \mathbf{u}^{\prime}, \mathbf{d}^{\prime}\right)$
- Each event contributing to one of 4 equations is weighted with a signal weight, $\omega_{S}=\left[f P_{\mu} a_{L L} \mathrm{~S} /(\mathrm{S}+\mathrm{B})\right]$, and thereafter the weighted sums of events are taken. This procedure is repeated using a background weight, $\omega_{B}=\left[f P_{\mu} D B /(S+B)\right]$, thereby giving rise to a system of:

The system is solved by a χ^{2} minimisation

Determination of $\mathbf{S} /(\mathbf{S}+\mathbf{B})$

$\mathrm{s} /(\mathrm{s}+\mathrm{b})_{\mathrm{NN}}:$ Neural Network (NN) parameterisation

- Two real data samples are compared by a NN, using some kinematic variables as a learning vector:
- Signal model $\rightarrow \mathbf{g c c}=\mathbf{K}^{+} \pi^{-} \pi_{\mathrm{s}}^{-}+\mathbf{K}^{-} \pi^{+} \pi_{\mathrm{s}}^{+}\left(D^{0}\right.$ spectrum $)$
- Background model \rightarrow wcc $=\mathbf{K}^{+} \pi^{+} \pi_{\mathrm{s}}^{-}+\mathbf{K}^{-} \pi^{-} \pi_{\mathrm{s}}^{+}$
- To ensure an unbiased parameterisation, 2 data sets are used:

- If the minimisation of errors in the train \& test (control sample) sets begin to diverge during the learning process, the NN changes its strategy: some neurons can be killed and others can be born
- D^{0} probabilities are computed, for every gcc event, using the resulting multidimensional parameterization (weights of each variable-neuron connection): $\mathbf{f}\left(\mathbf{o}_{\mathbf{1}}\right)=[\mathbf{s} /(\mathbf{s}+\mathbf{b})]_{\mathrm{NN}}$

Example of a good kinematic variable to use in the training of the Neural Network

- Cosine of the polar angle of kaon in the D^{0} center-of-mass relative to the D^{0} momentum:

$\mathrm{s} /(\mathrm{s}+\mathrm{b})$: Obtaining final probabilities for a $\mathbf{D}^{\mathbf{0}}$ candidate

- Events with small $[\mathrm{s} /(\mathrm{s}+\mathrm{b})]_{\mathrm{NN}}$
- Mostly combinatorial background is selected
$\mathbf{s} /(\mathbf{s}+\mathbf{b})$ is obtained from a fit to these spectra (correcting all events with the corresponding values of $\left.[\mathbf{s} /(\mathbf{s}+\boldsymbol{b})]_{N N}\right)$

$$
\delta\left(\frac{\Delta \mathbf{G}}{\mathbf{G}}\right)=\frac{1}{\mathbf{F O M}}
$$

- Events with large $[\mathrm{s} /(\mathrm{s}+\mathrm{b})]_{\mathrm{NN}}$
- Mostly Open-Charm events are selected

Determination of \mathbf{a}_{LL} at LO in QCD

The muon-gluon analysing power

- a_{LL} is dependent on the full knowledge of the partonic kinematics:

$$
\mathrm{a}_{\mathrm{LL}}=\left\langle\frac{\Delta \hat{\sigma}_{\mu \mathrm{g}}}{\hat{\sigma}_{\mu \mathrm{g}}}\left(\mathrm{y}, \mathrm{Q}^{2}, \mathrm{x}_{\mathrm{g}}, \mathrm{z}_{\mathrm{C}}, \phi\right)\right.
$$

Can't be experimentally obtained: only one charmed meson is reconstructed

- $a_{\text {LL }}$ is determined from a Monte-Carlo simulation of the Open-Charm production in the COMPASS experiment, using the AROMA generator without parton-showers. Thereafter, the obtained values are used as an input for a NN parameterisation on some experimentally accessible kinematical variables: $y, x_{B j}, Q^{2}$, z_{D} and p_{T}

Parameterised $a_{\text {LL }}$ shows a strong

 correlation with the generated one

Open-Charm results at LO in QCD

$$
\frac{\Delta \mathbf{G}}{\mathbf{G}}=-0.08 \pm 0.21(\text { stat }) \pm 0.09(\text { syst }) \quad @\left\langle\mathbf{x}_{\mathbf{g}}\right\rangle=0.11_{-0.05}^{+0.11},\left\langle\mu^{2}\right\rangle=13(\mathbf{G e V} / \mathbf{c})^{2}
$$

World measurements of $\Delta G / G$ at $L O$ in $Q C D$

- The gluon polarisation was obtained directly from the data, at LO, and was found to be compatible with zero

Determination of $\Delta \mathrm{G} / \mathrm{G}$ at NLO in QCD

NLO corrections to the analysing power \mathbf{a}_{LL}

Procedure for NLO calculations

- The AROMA generator with parton-shower-on (PS-on) describes the COMPASS data very well. Therefore, the concept of PS was used to simulate the needed phase space for NLO corrections:
- The energy of parton-showers defines the upper limit of integration over the energy of the unobserved gluon/quark, in the NLO emission process

This procedure guarantees a correct infra-red divergence cancellation. Consequently, $\underline{\mathrm{a}}_{\mathrm{L}}$ is calculated event-by-event from theoretical formulas (as in LO case)

- The following photon-nucleon asymmetries were used to determine $\Delta \mathrm{G} / \mathrm{G}$:

The replacement of $a_{L L}$ by D in ω_{S} implies the extraction of $\mathrm{A}^{2 N}$ instead of $\Delta \mathrm{G} / \mathrm{G}$

- Independent of theoretical interpretations \rightarrow good for global fits of $\Delta \mathrm{G}$
- The quantity A_{1} belonging to the light-quark correction, $\mathrm{A}_{\text {corr }}$, is taken directly from data

AROMA with PS-ON versus COMPASS data

- Differential cross section for \mathbf{D}^{*} meson production $\left(\mathrm{D}_{\mathrm{K} \pi}^{0}(2004)\right.$ from D^{*+} and D^{*-} COMPASS data):

EMC

$$
\sigma\left(\mathrm{D}^{* \pm}\right)=1.8 \pm 0.4 \mathrm{nb}
$$

within $20 \mathrm{GeV}<\mathrm{E}_{\mathrm{D}}<80 \mathrm{GeV}$

Distributions of $a_{L L}$ and x_{G} at LO and NLO in QCD

$\Delta \mathrm{G} / \mathrm{G}$ result at NLO in QCD \rightarrow first world measurement

$$
\frac{\Delta \mathbf{G}}{\mathbf{G}}=-0.20 \pm 0.21(\text { stat }) \pm 0.09(\mathbf{s y s t}) \quad @\left\langle\mathbf{x}_{\mathbf{G}}\right\rangle=0.28_{-0.10}^{0.19},\left\langle\mu^{2}\right\rangle=13(\mathbf{G e V / c})^{2}
$$

Only experimental: theoretical uncertainties associated with a_{LL} are still under study!

Open-Charm results for $\mathbf{x} \Delta \mathbf{G}$

- Using the LO and NLO parameterisations of $x G$ corresponding to the ones used in the calculations of a_{LL}, we obtain the following results from $\Delta \mathrm{G} / \mathrm{G}$ (the comparison of the LO point with the QCD fits is justified by $x G(L O) \approx x G(N L O))$:

SPARES

Systematic errors

What has been checked?

- $\mathrm{S} /(\mathrm{S}+\mathrm{B})$
- a_{LL} (Monte Carlo + NN stability)
- Beam Polarisation
- Target Polarisation
- Dilution Factor
- False Asymmetries (FA)

	LO	NLO
$\delta(\Delta \mathbf{G} / \mathbf{G})_{\text {S/S } \mathrm{S} \text { B }}$	0.022	0.031
$\delta(\Delta G / G){ }_{a_{u}}$	0.025	???
$\delta(\Delta \mathbf{G} / \mathbf{G})_{\mathbf{P}_{\mu}}$	0.015	0.021
$\delta(\Delta G / G){ }_{P_{t}}$	0.015	0.021
$\delta(\Delta G / G){ }_{f}$	0.006	0.008
$\delta(\Delta \mathrm{G} / \mathrm{G})_{\mathrm{FA}}$	0.080	0.080
$\delta(\Delta \mathbf{G} / \mathbf{G}){ }_{A_{S}}^{\omega_{S}}={ }_{A_{S}}^{\omega_{\mathrm{S}}}$	0.025	0.025
Total	0.094	???

Results for $\mathrm{A}^{\gamma^{N}}(\mathrm{PGF})$

Bins	$\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$ samples			$\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi^{0}$ sample			$\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi \pi \pi$ sample		
$\begin{array}{c\|c} \hline \mathbf{p}_{\mathrm{T}}\left(\mathbf{D}^{\mathbf{0}}\right) & \mathbf{E}\left(\mathbf{D}^{\mathbf{0}}\right) \\ (\mathrm{GeV} / \mathrm{c}) & (\mathrm{GeV}) \\ \hline \end{array}$	$\mathrm{A}^{\gamma \mathrm{N}}$	$\mathbf{a}_{\text {LL }}^{\mathrm{PGF} / \mathrm{D}}$	$\mathbf{A}_{\text {corr }}$	$\mathrm{A}^{\gamma \mathrm{N}}$	$\mathbf{a}_{\text {LL }}^{\text {PGF }} / \mathbf{D}$	$\mathbf{A}_{\text {corr }}$	$\mathrm{A}^{\gamma \mathrm{N}}$	$\mathbf{a}_{\text {LL }}^{\text {PGF }} / \mathrm{D}$	$\mathbf{A}_{\text {corr }}$
[0,30[-0.90 ± 0.63	0.00	0.01	-0.63 ± 1.29	-0.11	0.01	7.03 ± 4.74	-0.09	0.01
$[0,0.3[\bigcirc[30,50[$	-0.19 ± 0.48	-0.06	0.01	0.27 $\pm 1,17$	-0.08	0.01	-2.05 ± 1.10	-0.08	0.01
> 50	0.07 ± 0.68	-0.12	0.02	-2.55 ± 2.00	-0.11	0.02	0.17 ± 1.83	-0.09	0.01
[0, 30]	-0.18 ± 0.37	-0.08	0.01	-0.24 ± 0.80	-0.17	0.01	-0.59 ± 1.74	-0.10	0.02
[0.3,0.7] [30, 50[0.10 ± 0.26	-0.19	0.02	0.49 ± 0.69	-0.23	0.02	1.00 ± 0.54	-0.20	0.02
> 50	-0.04 ± 0.36	-0.22	0.02	-1.28 ± 1.03	-0.18	0.02	-1.75 ± 0.84	-0.21	0.02
[0, 30]	-0.42 ± 0.44	-0.26	0.01	0.55 ± 0.95	-0.29	0.02	2.91 ± 2.61	-0.19	0.01
[0.7,1.0[[30, 50[-0.36 ± 0.29	-0.29	0.01	-0.53 ± 0.76	-0.32	0.02	1.42 ± 0.57	-0.31	0.02
>50	1.49 ± 0.42	-0.33	0.03	-0.17 ± 1.00	-0.36	0.03	1.69 ± 0.81	-0.32	0.03
[0,30[-0.30 ± 0.35	-0.35	0.01	1.35 ± 0.86	-0.40	0.02	-1.89 ± 2.64	-0.36	0.02
[1.0,1.5] [30, 50[0.13 ± 0.23	-0.40	0.02	-0.11 ± 0.51	-0.44	0.03	-0.45 ± 0.51	-0.41	0.02
>50	-0.20 ± 0.33	-0.43	0.03	-0.05 ± 0.78	-0.42	0.04	1.06 ± 0.66	-0.45	0.03
[0,30]	0.38 ± 0.49	-0.49	0.02	-0.19 ± 1.14	-0.52	0.02	1.64 ± 3.52	-0.49	0.03
> 1.5 [30, 50[-0.00 ± 0.25	-0.53	0.03	-0.23 ± 0.51	-0.50	0.04	0.44 ± 0.68	-0.54	0.03
> 50	0.36 ± 0.33	-0.53	0.04	0.26 ± 0.90	-0.49	0.05	0.08 ± 0.63	-0.54	0.05

$\mathbf{D}^{*+} / \mathbf{D}^{*-}$ asymmetry: $\mathrm{A}(\mathrm{X})=\frac{\mathrm{d} \sigma^{\mathrm{D}^{*+}}(\mathrm{X})-\mathrm{d} \sigma^{\mathrm{D}^{*-}}(\mathrm{X})}{\mathrm{d} \sigma^{\mathrm{D}^{*+}}(\mathrm{X})+\mathrm{d} \sigma^{\mathrm{D}^{*-}}(\mathrm{X})}$

S/(S+B) parameterisation: FOM improvement (main channels)

S/(S+B) parameterisation: FOM improvement (low purity channels)

Ref. Hep-ph/0508126 and hep-ph/9508403 Phys. Lett. B93 (1980) 451
Data from EMC:Nucl.Phys.B213, 31(1983)

