∆G/G results from the Open-Charm production at COMPASS

CHARM2012 – Honolulu

Celso Franco (*LIP – Lisboa*) on behalf of the COMPASS collaboration

Nucleon spin structure

• Nucleon spin
$$\longrightarrow \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta \mathbf{G} + \mathbf{L}$$

quarks gluons orbital angular momentum (quarks/gluons)

• Assuming the static quark model wave function:

$$|\mathbf{p}\uparrow\rangle = \frac{1}{\sqrt{18}} \left[2|\mathbf{u}\uparrow\mathbf{u}\uparrow\mathbf{d}\downarrow\rangle - |\mathbf{u}\uparrow\mathbf{u}\downarrow\mathbf{d}\uparrow\rangle - |\mathbf{u}\uparrow\mathbf{u}\downarrow\mathbf{d}\uparrow\rangle - |\mathbf{u}\uparrow\mathbf{u}\downarrow\mathbf{d}\uparrow\rangle + (\mathbf{u}\bigstar\mathbf{d}) \right]$$

$$\Delta \mathbf{u} = \langle \mathbf{p} \uparrow | \mathbf{N}_{\mathbf{u}\uparrow} - \mathbf{N}_{\mathbf{u}\downarrow} | \mathbf{p} \uparrow \rangle = \frac{3}{18} (10 - 2) = \frac{4}{3}$$
$$\Delta \mathbf{d} = \langle \mathbf{p} \uparrow | \mathbf{N}_{\mathbf{d}\uparrow} - \mathbf{N}_{\mathbf{d}\downarrow} | \mathbf{p} \uparrow \rangle = \frac{3}{18} (2 - 4) = -\frac{1}{3}$$

• $\Delta\Sigma = (\Delta \mathbf{u} + \Delta \mathbf{d}) = 1$

Up and Down quarks carry all the nucleon spin

Spin crisis

- **However, by applying relativistic corrections** (and assuming SU(3) symmetry): ΔΣ~0.60
- Where is the remaining part of the nucleon spin? (ΔG ? $L_{q(q)}$?)

 $\mathbf{Q}^2 = -\mathbf{q}^2$

 $\mathbf{v} = \mathbf{E} - \mathbf{E'}$

 $\mathbf{y} = \mathbf{v} / \mathbf{E}$

- Gluons solved the problem of the missing momentum in the nucleon:
 - Will they be the solution too for this missing spin? \Rightarrow Measure $\Delta G!$
- **Experimental** $\Delta \Sigma$ (from polarised DIS):

(E, k)

(U)

SPIN CRISIS!!!

- Another reason for measuring the gluon contribution to the nucleon spin:
 - <u>Due to the gluon axial anomaly</u>, a large ΔG could explain why $\Delta \Sigma$ was found so small

The COMPASS Experiment

Common Muon and Proton Apparatus for Structure and Spectroscopy

250 physicistsCOMP 48.25 institutes10 countries + CERN

Taking data since 2002

LHC

The polarised beam

The spectrometer and polarised target

The Open-Charm analysis

How to tag a polarised gluon?

• In COMPASS, we can probe directly the gluons using the following interaction:

The photon-gluon fusion process (LO-PGF)

Reconstruction of Open-Charm mesons

- **Events considered** (resulting from the c-quarks fragmentation):
 - $D^0 \to K\pi \quad (BR: 4\%)$
 - $D^* \rightarrow D^0 \pi_{slow}$ (30% of D^0 are <u>tagged with</u> a D^*)
 - $D^0 \rightarrow K\pi$
 - $D^0 \rightarrow K\pi\pi^0$ (*BR*: 13%) \rightarrow not directly reconstructed
 - $D^0 \rightarrow K\pi\pi\pi$ (BR: 7.5%)
 - $D^0 \rightarrow K_{sub}\pi$ \blacktriangleright no RICH ID for kaons $(\underline{p(K)} < 9 \ GeV/c)$
- Selection to reduce the combinatorial background:
 - Kinematic cuts: $Z_{D^0} (= E_{D^0} / E_{\gamma^*})$ and polar angle of kaon in the D⁰ center-ofmass (to reject collinear events with the γ^* direction), K and π momentum
 - **RICH identification:** <u>K and π ID</u> + rejection of electrons from the π_{slow} sample
 - Mass cut for the D^{*} tagged channels ($M^{rec}[K\pi\pi_{slow}] M^{rec}[K\pi] M[\pi]$)
 - Use of a Neural Network to improve the purity of the D⁰ mass spectra

The mass cut for the D* tagged channels

Invariant mass spectrum: $D^{0}_{K\pi}$ (D* tagged and untagged channels)

Invariant mass spectrum: $D^{0}_{K\pi\pi\pi}$ (D* tagged)

Measuring D^0 asymmetries to extract ΔG

• The number of reconstructed D^0 inside each spin configuration of the target, N_t (t = u, d, u', d'), can be used to extract an Open-Charm asymmetry from the PGF interaction:

Considering $A^{bg} = 0$

$$A^{exp} = \frac{1}{2} \left(\frac{N_u - N_d}{N_u + N_d} + \frac{N_{d'} - N_{u'}}{N_{u'} + N_{d'}} \right)$$
$$= f \cdot P_{\mu} \cdot P_T \left(\frac{S}{S + B} \right) \cdot A^{\mu, N}$$

Probability of an event to be a D^0

upstream cell downstream cell

equal acceptance for both spin configurations

• In LO-QCD, we have for
$$A^{\mu, N}$$
: $A^{\mu, N} = \langle \hat{a}_{LL} \rangle \frac{\Delta G}{G}; \ \hat{a}_{LL} \equiv \left(\frac{\Delta \hat{\sigma}_{\mu g}}{\hat{\sigma}_{\mu g}} \right) = \frac{\hat{\sigma}_{\mu g}^{\Xi} - \hat{\sigma}_{\mu g}^{\Xi}}{\hat{\sigma}_{\mu g}^{\Xi} + \hat{\sigma}_{\mu g}^{\Xi}}$

• Weighting each event with $\omega = [f P_{\mu} (S/(S+B) a_{\mu})]$: • needed for every event

$$\frac{\Delta G}{G} = \frac{1}{2P_{T}} \left(\frac{\sum_{i=0}^{N_{u}} \omega_{i} - \sum_{i=0}^{N_{d}} \omega_{i}}{\sum_{i=0}^{N_{u}} \omega_{i}^{2} + \sum_{i=0}^{N_{d}} \omega_{i}^{2}} + \frac{\sum_{i=0}^{N_{u'}} \omega_{i} - \sum_{i=0}^{N_{d'}} \omega_{i}}{\sum_{i=0}^{N_{u'}} \omega_{i}^{2} + \sum_{i=0}^{N_{d'}} \omega_{i}^{2}} \right) \frac{\text{statistical gain:}}{\left\langle \sum_{i=0}^{N_{tot}} \omega_{i}^{2} \right\rangle}$$

Open-Charm analysis: Simultaneous extraction of $\Delta G/G$ and A^{bg}

• The relation between the number of reconstructed D^0 and $\Delta G/G$ is given by (for each spin configuration of the target cells):

$$\mathbf{N}_{t} = \mathbf{a} \phi \mathbf{n} (\mathbf{S} + \mathbf{B}) \left(1 + \mathbf{f} \mathbf{P}_{T} \mathbf{P}_{\mu} \left[\mathbf{a}_{LL} \frac{\mathbf{S}}{\mathbf{S} + \mathbf{B}} \frac{\Delta \mathbf{G}}{\mathbf{G}} + \mathbf{D} \frac{\mathbf{B}}{\mathbf{S} + \mathbf{B}} \mathbf{A}^{bg} \right] \right), \quad \mathbf{t} = (\mathbf{u}, \mathbf{d}, \mathbf{u}', \mathbf{d}')$$

acceptance, muon flux, number of target nucleons probability of an event to be a D⁰

• Each event contributing to one of 4 equations is weighted with a signal weight, $\omega_{s} = [f P_{\mu} a_{LL} S/(S+B)]$, and thereafter the weighted sums of events are taken. This procedure is repeated using a background weight, $\omega_{B} = [f P_{\mu} D B/(S+B)]$, thereby giving rise to a system of:

<u>8 equations with 7 unknowns</u>: $\Delta G/G$, $A^{bg} + 5$ independent $\alpha = (a\phi n)$ factors

The system is solved by a χ^2 minimisation

Determination of S/(S+B)

s/(s+b)_{NN}: Neural Network (NN) parameterisation

- Two real data samples are compared by a NN, <u>using some</u> <u>kinematic variables as a learning vector</u>:
 - Signal model \rightarrow gcc = K⁺ $\pi^{-}\pi_{s}^{-}$ + K⁻ $\pi^{+}\pi_{s}^{+}$ (D⁰ spectrum)
 - **Background model** \rightarrow wcc = K⁺ $\pi^+\pi_{c}^-$ + K⁻ $\pi^-\pi_{c}^+$

- If the minimisation of errors in the train & test (control sample) sets begin to diverge during the learning process, the NN changes its strategy: some neurons can be killed and others can be born
- D^0 probabilities are computed, <u>for every gcc event</u>, using the resulting multidimensional parameterization (weights of each variable-neuron connection): $f(o_1) = [s/(s+b)]_{NN}$

Example of a good kinematic variable to use in the training of the Neural Network

• <u>Cosine of the polar angle of kaon in the D⁰ center-of-mass relative to the D⁰</u> <u>momentum</u>:

s/(s+b): Obtaining final probabilities for a D⁰ candidate

- Events with small [s/(s+b)]_{NN}
 - Mostly combinatorial background is selected

s/(s+b) is obtained from a fit to these spectra (correcting all events with the corresponding values of $[s/(s+b)]_{NN}$)

- Events with large [s/(s+b)]_{NN}
 - Mostly Open-Charm events are selected

[s/(s+b)]_{NN} < 0.53

G

FOM

Determination of a_{LL} at LO in QCD

The muon-gluon analysing power

• a_{LL} is <u>dependent on the full knowledge of the partonic kinematics</u>:

$$\mathbf{a}_{LL} = \left\langle \frac{\Delta \hat{\sigma}_{\mu g}}{\hat{\sigma}_{\mu g}}(\mathbf{y}, \mathbf{Q}^2, \mathbf{x}_g, \mathbf{z}_C, \boldsymbol{\phi}) \right\rangle$$

Can't be experimentally obtained: <u>only one charmed meson is reconstructed</u>

• a₁₁ is determined from a Monte-Carlo simulation of the Open-Charm production in the COMPASS experiment, using the AROMA generator without parton-showers. Thereafter, the obtained values are used as an input for a a_L (generated) 9.0 7.0 NN parameterisation on some experimentally accessible kinematical variables: y, $x_{_{Bi}}$, Q^2 , $z_{\rm D}$ and $p_{\rm T}$ 0.2 -0 -0.2 Parameterised a strong -0.4 correlation with the generated one -0.6 **Correlation: 82%** -0.8

a, (reconstructed)

Open-Charm results at LO in QCD

 $\frac{\Delta \mathbf{G}}{\mathbf{G}} = -0.08 \pm 0.21 (\mathbf{stat}) \pm 0.09 (\mathbf{syst}) \qquad (\mathbf{a} \langle \mathbf{x}_{\mathbf{g}} \rangle = 0.1 \, \mathbf{1}_{-0.05}^{+0.11}, \ \langle \mu^2 \rangle = 13 (\mathbf{G} \, \mathbf{eVc})^2$

World measurements of $\Delta G/G$ at LO in QCD

• The gluon polarisation was obtained directly from the data, at LO, and was found to be <u>compatible with zero</u>

Determination of \Delta G/G at NLO in QCD

NLO corrections to the analysing power \mathbf{a}_{LL}

Procedure for NLO calculations

- The AROMA generator with parton-shower-on (PS-on) describes the COMPASS data very well. Therefore, the concept of PS was used to simulate the needed phase space for NLO corrections:
 - The energy of parton-showers defines the upper limit of integration over the energy of the unobserved gluon/quark, in the NLO emission process

This procedure guarantees a correct infra-red divergence cancellation. Consequently, <u>a</u> is calculated event-by-event from theoretical formulas (as in LO case)

• The following photon-nucleon asymmetries were used to determine $\Delta G/G$:

$$\mathbf{A}^{\gamma \mathbf{N}} = \left(\frac{\mathbf{a}_{\mathbf{LL}}^{\mathbf{PGF}}(\mathbf{NLO})}{\mathbf{D}} \frac{\Delta \mathbf{G}}{\mathbf{G}} + \frac{\mathbf{a}_{\mathbf{LL}}^{\mathbf{q}}(\mathbf{NLO})}{\mathbf{D}} \mathbf{A}_{1} \right)$$

The replacement of a_{LL} by D in ω_{S} implies the extraction of $A^{\gamma N}$ instead of $\Delta G/G$

► Independent of theoretical interpretations \rightarrow good for global fits of ΔG

• The quantity A_1 belonging to the light-quark correction, A_{corr} , is taken directly from data

AROMA with PS-ON versus COMPASS data

• Differential cross section for D^* meson production ($D^0_{K\pi}(2004)$ from D^{*+} and D^{*-} COMPASS data):

Distributions of a_{LL} and x_{G} at LO and NLO in QCD

$\Delta G/G$ result at NLO in QCD \rightarrow first world measurement

 $\frac{\Delta G}{G} = -0.20 \pm 0.21 \text{ (stat)} \pm 0.09 \text{ (syst)} \quad @\langle \mathbf{x}_{G} \rangle = 0.2 \, \$_{0.10}^{+0.19}, \quad \langle \mu^{2} \rangle = 13 (G \, e \, \forall c)^{2}$

<u>Only experimental</u>: theoretical uncertainties associated with a are still under study!

Open-Charm results for x\Delta G

• Using the LO and NLO parameterisations of xG corresponding to the ones used in the calculations of a_{LL} , we obtain the following results from $\Delta G/G$ (the comparison of the LO point with the QCD fits is justified by $xG(LO) \approx xG(NLO)$):

Systematic errors

What has been checked?

- S/(S+B)
- a_{LL} (Monte Carlo + NN stability)
- Beam Polarisation
- Target Polarisation
- Dilution Factor
- False Asymmetries (FA)

• Assumption on
$$\left\langle \frac{\Delta G}{G} \right\rangle^{\omega_s} \approx \left\langle \frac{\Delta G}{G} \right\rangle^{\omega_s}$$

	LO	NLO
$\delta(\Delta G/G)_{S/(S+B)}$	0.022	0.031
$\delta(\Delta G/G)_{a_{LL}}$	0.025	???
$\delta(\Delta G/G)_{P_{\mu}}$	0.015	0.021
$\delta(\Delta G/G)_{P_t}$	0.015	0.021
$\delta(\Delta G/G)_{f}$	0.006	0.008
$\delta(\Delta G/G)_{FA}$	0.080	0.080
$\delta(\Delta G/G)_{A_S^{\omega_S}=A_S^{\omega_B}}$	0.025	0.025
Total	0.094	???

Results for A^{YN}(PGF)

Bins		$D^0 \rightarrow K\pi$ samples			$D^0 \rightarrow K\pi\pi^0$ sample			$D^0 \rightarrow K\pi\pi\pi$ sample		
p _T (D ⁰) (GeV/c)	E (D⁰) (GeV)	$\mathbf{A}^{\mathbf{\hat{\gamma}}\mathbf{N}}$	a ^{PGF} /D	A _{corr}	$\mathbf{A}^{\mathbf{\gamma}\mathbf{N}}$	a ^{PGF} /D	A _{corr}	$\mathbf{A}^{\mathbf{\gamma}\mathbf{N}}$	a ^{PGF} /D	$\mathbf{A}_{\mathbf{corr}}$
[0, 0.3[[0, 30[-0.90±0.63	0.00	0.01	-0.63±1.29	-0.11	0.01	7.03±4.74	-0.09	0.01
	[30, 50[-0.19±0.48	-0.06	0.01	0.27±1,17	-0.08	0.01	-2.05±1.10	-0.08	0.01
	> 50	0.07±0.68	-0.12	0.02	-2.55±2.00	-0.11	0.02	0.17±1.83	-0.09	0.01
[0.3,0.7[[0, 30[-0.18±0.37	-0.08	0.01	-0.24±0.80	-0.17	0.01	-0.59±1.74	-0.10	0.02
	[30, 50[0.10±0.26	-0.19	0.02	0.49±0.69	-0.23	0.02	1.00±0.54	-0.20	0.02
	> 50	-0.04±0.36	-0.22	0.02	-1.28±1.03	-0.18	0.02	-1.75±0.84	-0.21	0.02
[0.7,1.0]	[0, 30[-0.42±0.44	-0.26	0.01	0.55±0.95	-0.29	0.02	2.91±2.61	-0.19	0.01
	[30, 50[-0.36±0.29	-0.29	0.01	-0.53±0.76	-0.32	0.02	1.42±0.57	-0.31	0.02
	> 50	1.49±0.42	-0.33	0.03	-0.17±1.00	-0.36	0.03	1.69±0.81	-0.32	0.03
[1.0,1.5]	[0, 30[-0.30±0.35	-0.35	0.01	1.35±0.86	-0.40	0.02	-1.89±2.64	-0.36	0.02
	[30, 50[0.13±0.23	-0.40	0.02	-0.11±0.51	-0.44	0.03	-0.45±0.51	-0.41	0.02
	> 50	-0.20±0.33	-0.43	0.03	-0.05±0.78	-0.42	0.04	1.06±0.66	-0.45	0.03
> 1.5	[0, 30[0.38±0.49	-0.49	0.02	-0.19±1.14	-0.52	0.02	1.64±3.52	-0.49	0.03
	[30, 50[-0.00±0.25	-0.53	0.03	-0.23±0.51	-0.50	0.04	0.44 ± 0.68	-0.54	0.03
	> 50	0.36±0.33	-0.53	0.04	0.26±0.90	-0.49	0.05	0.08±0.63	-0.54	0.05

D*+/**D***- asymmetry:
$$A(X) = \frac{d\sigma^{D^{*+}}(X) - d\sigma^{D^{*-}}(X)}{d\sigma^{D^{*+}}(X) + d\sigma^{D^{*-}}(X)}$$

S/(S+B) parameterisation: FOM improvement (main channels)

S/(S+B) parameterisation: FOM improvement (low purity channels)

