The 5th International Workshop on Charm Physics (Charm 2012) University of Hawaii, Honolulu, USA, 14-17 May, 2012

> LHC Results on Charmonium in Heavy lons

> > Byungsik Hong (Korea University)

On behalf of ALICE, ATLAS and CMS

<u>Outline</u>

1. Introduction

- Heavy-ion collision and quark-gluon plasma (QGP)
- Charmonium in heavy-ion collisions
- 2. Experimental data
 - Early inclusive high- p_T results from ATLAS
 - Later detailed high- p_T results from CMS
 - Separation of prompt and non-prompt J/ψ s
 - p_T , y and centrality dependences
 - Low- p_T results from ALICE
- 3. Summary

Introduction

- Quark-gluon plasma (QGP)
 - Primordial matter existed a few µs after the Big Bang
 - T \geq 170 MeV, $\epsilon_0 \geq$ 1 GeV/fm³
 - Critical to understand QCD at extreme conditions

Quarkonium in Heavy Ions

- Powerful tool to probe QGP
 - Large mass: a large momentum transfer needed in hard gg scattering at early stage
 - Color screening: various quarkonium states melt at different temperatures
 - Important signature of the QGP formation

[Matsui & Satz, PLB178, 416 (1986)]

State		J/ψ (1S)		χ_c (1P)	ψ' (2S)	
m (GeV/c ²)		3.10		3.53	3.68	
<i>r</i> ₀ (fm)		0.50		0.72	0.90	
Υ (1S)	χ_b (1P)		Υ´ (2S)	χ'_{b} (2P)	Ϋ́ (3S)	_
9.46	9.99		10.02	10.26	10.36	_
0.28	0.44		0.56	0.68	0.78	_

J/ψ at Lower Energies

- Two puzzles
 - 1) At midrapidity, similar suppression at RHIC & SPS, while density must be higher at RHIC

J/ψ at Lower Energies

- Two puzzles
 - 1) At midrapidity, similar suppression at RHIC & SPS, while density must be higher at RHIC
 - 2) More suppression at forward rapidity, while density must be lower

J/ψ at Lower Energies

- Two puzzles
 - 1) At midrapidity, similar suppression at RHIC & SPS, while density must be higher at RHIC
 - 2) More suppression at forward rapidity, while density must be lower
- Two possibilities

 Cold: shadowing, saturation brings the forward yield down
 - 2) Hot: recombination of uncorrelated *cc* brings the midrapidity yield up

$$R_{AA}(p_T) = \frac{d^2 N_{AA}/dp_T d\eta}{< T_{AA} > d^2 \sigma_{NN}/dp_T d\eta}$$

• LHC data with higher temperature and density will help to resolve the J/ψ puzzles.

Heavy-Ion Runs at LHC

First heavy-ion run

- Nov. Dec. 2010
- PbPb @ $\sqrt{s_{NN}}$ = 2.76 TeV
- Rec. luminosity: 7.28 µb⁻¹
- Reference pp run
 - March 2011
 - pp @ $\sqrt{s_{NN}}$ = 2.76 TeV
 - Rec. luminosity: 225 nb⁻¹
 - Equivalent statistics for hard probes like quarkonia

Second heavy-ion run

- November 2011
- PbPb @ $\sqrt{s_{NN}}$ = 2.76 TeV
- Rec. luminosity: 150 µb⁻¹
- About 20 times of 2010 statistics

*Luminosity quotes from CMS

All results presented in this talk are from 2010 run data

<u>High-p_T J/ψ</u>

- ATLAS & CMS territory
 - -Large acceptance and high bandwidth
 - -Material and relatively high B-field prevent detecting low- p_T muons (thus low- $p_T I/\psi$)

- Muon p_T cut: 80% of the reconstructed J/ψ in p_T >6.5 GeV/c
- Definitely suppressed: larger effect for more central collisions

Later Results from CMS

- Similar constraints on the muon pairs
 - $p_T > 6.5 \text{ GeV for } |y| < 1.2$
 - Down to p_T = 3 GeV for the most forward bin, 1.6<|y|<2.4
- Analyzed R_{AA} (not R_{cp}) using pp reference
- More centrality bins
- Subtraction of $B \rightarrow J/\psi$ component
 - 20-30% at this p_T range (see later slides)

J/ψ Analysis in CMS

- $R_{AA} = 0.20 \pm 0.03(stat) \pm 0.01(sys) \pm 0.01(global)$ for 0-10%
 - Factor 5 suppression
 - More suppression than at RHIC at high p_T

- $R_{AA} = 0.20 \pm 0.03(stat) \pm 0.01(sys) \pm 0.01(global)$ for 0-10%
 - Factor 5 suppression
 - More suppression than at RHIC at high p_T
- Suppression also in peripheral events (cf. ATLAS R_{cp} for 40~80%)

- $R_{AA} = 0.20 \pm 0.03(stat) \pm 0.01(sys) \pm 0.01(global)$ for 0-10%
 - Factor 5 suppression
 - More suppression than at RHIC at high p_T
- Suppression also in peripheral events (cf. ATLAS R_{cp} for 40~80%)
- Less suppression at forward rapidity (anti-shadowing effect?)

<u>Non-Prompt J/ψ</u>

- Secondary J/ψ from B decay also suppressed strongly
 - $R_{AA} = 0.37 \pm 0.08(stat) \pm 0.02(sys) \pm 0.02(global \ scale)$
 - Factor ~3 suppression for the most central 20%
- First hint of *b*-quark energy loss in the medium

<u>Low-p_T J/ ψ </u>

- ALICE territory
 - Measuring low- p_T muons down to p_T =0.5 GeV/c (J/ ψ down to p_T =0)
 - More backgrounds at low p_T

ALICE performance plots from A. Andronic

Low-p_T Results from ALICE

- Less suppression than at RHIC at low p_T
 - $R_{AA}(2.5 < y < 4)$ from ALICE > $R_{AA}(1.2 < |y| < 2.2)$ from PHENIX
 - Opposite to the high- p_T behavior

Zhao & Rapp, NPA859, 114 (2011) +private communication • Recombination should be important at low p_T

More on Recombination

- Models are sensitive to $d\sigma_{c\bar{c}}/dy$
- The transport models are sensitive to the rate equation controlling the J/ψ dissociation and regeneration
 - -For the most central collisions, recombination component is ~50%

Cold Nuclear Matter Effects

Preliminary theoretical calculations: Ferreiro et al., BNL and EMMI Workshops in 2011

• CNM for traditional $2 \rightarrow 2 (gg \rightarrow J/\psi + g)$

- CNM effect from CEM NLO before k_T smearing
 - Different parametrizations of nPDF (nDSg and EKS)
- pPb run this year will help a lot for the CNM effect

$Y(1S) \qquad Not a subject for this Workshop \\ But quite relevant to the J/\psi production in heavy ions$

<u>Y(2S+3S)</u>

CMS, PRL107, 052302 (2011), PbPb MinBias

• Probability to obtain the measured value, or lower, from the background fluctuation is 0.9% (2.4 σ effect)

Summary

- 1. Suppression of J/ψ in PbPb
 - More suppression at high p_T than at low p_T (note: different y)
 - More suppression at LHC than at RHIC at high p_T for |y| < 2.4
 - Less suppression at LHC than at RHIC at low p_T for 2.5 < y < 4

2. Current understanding

- Recombination is important at low p_T
- Initial state effect is important
 - pPb run this year will help to understand the initial state effect

3. On the *b* sector

- Non-prompt J/ψ is suppressed
 - First hint of *b*-quark energy loss in medium
- $\Upsilon(1S)$ is suppressed
- $\Upsilon(2S + 3S)$ is suppressed with respect to $\Upsilon(1S)$

Eskola et al., hep-ph/0902.4154v1

Kinematic Coverage

<u>ALICE $m_{\mu^+\mu^-}$ Plot with Fit</u>

