Non-leptonic charm decays and CP Violation

Bhubanjyoti Bhattacharya, University of Montreal

> Charm 2012, University of Hawai'i

May 14 - 17, 2012

Thanks to my collaborators Jon Rosner, Michael Gronau, and Cheng-Wei Chiang.

Special thanks to David London for useful comments and discussions.

Non-leptonic charm decays and CP Violation

1/22

Outlin

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

> Recent Developments Direct CP Asymmetries using flavor SU(3)

<u>Outline</u>

- Why study charm?
- Part 1: D decays
 - Flavor-SU(3) symmetry
 - 2-body decays
 - 3-body decays
- Part 2: CP Asymmetries
 - Recent Developments
 - Direct asymmetries using flavor SU(3)
- Summary and Conclusions

Non-leptonic charm decays and CP Violation

2/22

Outline

Why study charm?

Part 1: D decay Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Summary and Conclusions

Why study charm?

In the LHC era, experiments are expected to find evidence of new physics beyond the Standard Model (SM): may very well be observed in flavor physics.

Processes that are ordinarily suppressed in the SM: Good place to look for new physics. New-physics contributions may be same order as in the SM, hence easier to detect.

SM penguins in charm decays suffer from suppressions: Small CKM factors, down-type GIM mechanism. To identify new physics it's necessary to understand these in the SM.

Difficulties: The D meson is heavier than the QCD Scale, however not as heavy as the B meson. Hadronic uncertainties are difficult to ascertain.

Questions: What can we learn using a phenomenological model? Is flavor SU(3) useful in studying charm decays?

Non-leptonic charm decays and CP Violation

3/22

Outline

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Part 1: D decays

Flavor-SU(3) symmetry

 $m_c \gg m_u, m_d, m_s$: Assume flavor-SU(3) symmetry.

Tree level, $D \rightarrow PP$ amplitudes: 4 distinct topologies:

 $\begin{array}{l} \mathsf{CF}(V_{cs}^*V_{ud} \sim 1), \ \mathsf{SCS}(V_{cs}^*V_{us} \sim \lambda \ \mathrm{or} \ V_{cd}^*V_{ud} \sim -\lambda) \ \mathsf{and} \\ \mathsf{DCS}(V_{cd}^*V_{us} \sim -\lambda^2), \qquad \lambda = \tan(\theta_{\mathrm{Cabibbo}}) = 0.2317. \end{array}$

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > ● ④ < ⊙ < ⊙

Non-leptonic charm decays and CP Violation

4/22

Outline

Why study charm?

Part 1: D decays

Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

<u>CF $D \rightarrow PP$:</u> 8 measured B, 7 unknowns (Real T, C, E, A). BB, J. Rosner, PRD **77**, 114020 (2008), BB, J. Rosner, PRD **81**, 014026 (2010): Reasonable Fit.

Meson	Mode	$\mathcal{B}(\%)$	$Rep.(\mathcal{A})$	Th. \mathcal{B} (%)			
D^0	$K^{-}\pi^{+}$	3.89±0.08	T + E	3.91			
	$\overline{K}^{0}\pi^{0}$	$2.38{\pm}0.09$	$(C-E)/\sqrt{2}$	2.35			
	$\overline{K}^{0}\eta$	$0.96{\pm}0.06$	$C/\sqrt{3}$	1.00			
	$\overline{K}^0 \eta'$	$1.90{\pm}0.11$	$-(C+3E)/\sqrt{6}$	1.92			
D^+	$\overline{K}^0\pi^+$	$3.07{\pm}0.10$	C + T	3.09			
D_s^+	$\overline{K}^0 K^+$	2.98±0.17	C + A	2.94			
	$\pi^+\eta$	$1.84{\pm}0.15$	$(T - 2A)/\sqrt{3}$	1.81			
	$\pi^+\eta'$	3.95±0.34	$2(T + A)/\sqrt{6}$	3.60			
$T = 2.93, \ C = 2.34 \ e^{-i \ 152^{\circ}}, \ E = 1.57 \ e^{i \ 121^{\circ}}, \ A = 0.33 \ e^{i \ 70^{\circ}}$							
$\chi^2 = 1.79 (1 \mathrm{d.o.f.}), \ \mathcal{A} = M_D \sqrt{(8\pi \mathcal{B}\hbar)/(p^* \tau)} (\mathrm{in} 10^{-6} \mathrm{GeV})$							
			< □ > < □ > < □ > < □ >	<			

Non-leptonic charm decays and CP Violation

5/22

Outlin

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

<u>SCS $D \rightarrow PP$ </u>: $T' \sim \pm \lambda T$ (+(-) if $V_{cs}(V_{cd})$), C', E', A'. Ignore small relative weak phase between V_{cd} and V_{us} .

U-spin symmetry: $d \leftrightarrow s \Rightarrow \mathcal{A}(D^0 \to K^0 \overline{K}^0) = 0$, and $\Rightarrow \mathcal{A}(D^0 \to \pi^+ \pi^-) = -\mathcal{A}(D^0 \to K^+ K^-) = (T' + E').$

U-spin is broken in practice:

$$\begin{aligned} |\mathcal{A}(D^0 \to \pi^+ \pi^-)| &= 4.70 \pm 0.08 ; \quad |\lambda \ (T+E)| &= 5.82 \\ |\mathcal{A}(D^0 \to K^+ K^-)| &= 8.49 \pm 0.10 ; \text{ in units of } 10^{-7} \text{GeV} \\ |\mathcal{A}(D^0 \to K^0 \overline{K}^0)| &= 2.39 \pm 0.14 . \qquad \sim (E'_s - E'_d) \end{aligned}$$

Factorizable SU(3) breaking in *T* helps, but not enough: $|\mathcal{A}(D^0 \to \pi^+\pi^-)| = |-\lambda (T_{\pi} + E)| = 5.74$. $|\mathcal{A}(D^0 \to K^+K^-)| = |\lambda (T_K + E)| = 7.42$;

where,
$$\frac{T_{\pi}}{T} = \frac{f_{+(D\to\pi)}(m_{\pi}^2)}{f_{+(D\toK)}(m_{\pi}^2)} \cdot \frac{m_D^2 - m_{\pi}^2}{m_D^2 - m_K^2}, \ \frac{T_K}{T} = \frac{f_{+(D\toK)}(m_K^2)}{f_{+(D\toK)}(m_{\pi}^2)} \cdot \frac{f_K}{f_{\pi}}$$

Non-leptonic charm decays and CP Violation

6/22

Outline

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Penguin contributions to SCS *D* decays: $P = P_d + P_s$ and $PA = PA_d + PA_s$ (zero under U-Spin)

Weak phases of P_d and P_s differ by $\sim 6 \times 10^{-4}$: No appreciable contribution to CP asymmetries. P + PA contributes to both $\mathcal{A}(K^+K^-)$ and $\mathcal{A}(\pi^+\pi^-)$ with same sign: can act as proxy for SU(3) violation! Non-leptonic charm decays and CP Violation

7 / 22

Outline

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays

3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Extract P and P + PA by fitting to SCS decay rates. BB, M. Gronau, J. Rosner, PRD **85**, 054014.

 $P + PA = 0.44 + 1.41 \ i$; $P = -1.52 + 0.08 \ i \ (10^{-7} \ \text{GeV})$.

Decay	Amplitude	$ \mathcal{A} ~(10^{-7}~{ m GeV})$	
Mode	representation	ExperimentTheo	ry
$\pi^+\pi^-$	$-\lambda \left(\mathcal{T}_{\pi}+\mathcal{E} ight) +\left(\mathcal{P}+\mathcal{PA} ight)$	4.70±0.08 4.70)
K^+K^-	$\lambda \left(T_{\mathcal{K}} + E ight) + \left(P + P A ight)$	8.49±0.10 8.48	3
$\pi^0\pi^0$	$-\lambda \left(\mathcal{C}-\mathcal{E} ight) / \sqrt{2} - \left(\mathcal{P}+\mathcal{P} \mathcal{A} ight) / \sqrt{2}$	3.51±0.11 3.51	L
$\pi^+\pi^0$	$-\lambda ({\it T}_{\pi}+{\it C})/\sqrt{2}$	2.66±0.07 2.26	5
$K^0\overline{K}^0$	-(P + PA) + P	2.39±0.14 2.37	7
$K^+\overline{K}^0$	$\lambda \left(T_{K} - A_{D^{+}} ight) + P$	6.55±0.12 6.87	7
$\pi^+ K^0$	$-\lambda \left(T_{\pi}-A ight) +P$	5.94±0.32 7.96	5
$\pi^0 K^+$	$-\lambda \left({\it C}+{\it A} ight) /\sqrt{2} - {\it P}/\sqrt{2}$	2.94±0.55 4.44	ł

P + PA explains D^0 decay rates. Fit for P has large χ^2 . Measured D^+ and D_s^+ amplitudes have large errors.

Non-leptonic charm decays and CP Violation

8/22

Outlin

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

 $\underline{D \rightarrow PV}$: 10 unknowns: Real $T_{V,P}$, $C_{P,V}$, $E_{P,V}$. BB, J. Rosner, PRD **79**, 034016 (2009).

CF decay rates used to extract parameters: 12 exact solutions $(\mathcal{B}(D^0 \to \overline{K}^{*0} \eta') \text{ may help resolve discrete ambiguities.})$ Available SCS decay rates help choose lowest χ^2 solution: $T_V = 3.95$, $C_P = 4.88 e^{-i \, 162^\circ}$, $E_P = 2.94 e^{-i \, 93^\circ}$, $T_P = 7.46$, $C_V = 3.46 e^{-i \, 172^\circ}$, $E_V = 2.37 e^{-i \, 110^\circ}$. Tree amplitudes $(T_{P,V})$ assumed to be real (factorization.)

 $D \rightarrow PV$ amplitudes may be used to study Dalitz plots in 3-body D decays involving intermediate vector resonances. Large relative strong phases in 3-body D^0 decays involving intermediate vector resonances are useful for measuring γ , also good testing ground for flavor SU(3). Non-leptonic charm decays and CP Violation

9/22

Outline

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

 $D^0
ightarrow \pi^+\pi^-\pi^0$ Dalitz plot: ho^{\pm} and ho^0 resonances.

BABAR: Gaspero et al. PRD 78, 014015 (2008). I = 0 dominance reported: $\mathcal{A} = 0$ along symmetry axes. Flavor SU(3) agrees with I = 0 dominance! BB, C. -W. Chiang, J. Rosner, PRD 81, 096008 (2010). \Rightarrow Flavor SU(3) finds correct relative strong phases.

Non-leptonic charm decays and CP Violation

10/22

Outline

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays **3-body decays**

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Summary and Conclusions

Channel	Fraction(%)	vs BaBar(%)
I = 0	92.9±6.7	94.24±0.40
I = 1	4.8±0.3	$2.17{\pm}0.17$
I = 2	2.3±0.8	$3.58{\pm}0.29$

List of other 3-body D decays studied in the context of relative phases on Dalitz plots:

 $\begin{array}{ll} D^{0} \to K_{S}\pi^{+}\pi^{-} & \\ D^{0} \to \pi^{0}K^{+}K^{-} & \\ D^{0} \to K^{-}\pi^{+}\pi^{0} & \\ D^{0} \to K_{S}K^{-}\pi^{+} & \\ D^{0} \to K_{S}K^{-}\pi^{+} & \\ D^{0} \to K_{S}\pi^{-}K^{+} & \\ \end{array} \begin{array}{ll} \text{BB, J. Rosner, PRD $\mathbf{82}, 074025 (2010) \\ \\ \text{BB, J. Rosner, PRD $\mathbf{82}, 114032 (2010) \\ \\ \text{BB, J. Rosner, arXiv:1203.6014 (2012) } \\ \end{array}$

Measured relative phases between amplitudes differ from flavor-SU(3) predictions.

Amplitudes and relative phases in cross-ratios agree better with flavor-SU(3).

Non-leptonic charm decays and CP Violation

11 / 22

Outlin

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Part 2: CP Asymmetries $A_{CP}(f) \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to \overline{f})}$ $f = f_{CP}$ (e.g. $\pi^+\pi^-$): $A_{CP}(f) \simeq A_{CP}^{\text{dir}}(f) + \frac{\langle t \rangle}{\pi} A_{CP}^{\text{ind}}$ $(\tau = \text{true lifetime of } D^0, \langle t \rangle = \text{average decay time})$ $\mathcal{A}_{CP}^{\mathrm{dir}}(f) = \frac{|\mathcal{A}_{f}|^{2} - |\overline{\mathcal{A}}_{\overline{f}}|^{2}}{|\mathcal{A}_{f}|^{2} + |\overline{\mathcal{A}}_{\overline{f}}|^{2}} \text{ , where } \frac{\mathcal{A}_{f} \equiv \mathcal{A}(D^{0} \to f)}{\overline{\mathcal{A}}_{\overline{x}} \equiv \mathcal{A}(\overline{D}^{0} \to \overline{f})}$ $\begin{aligned} \mathcal{A}_f &= a_f (1 + r_f e^{i(\delta_f + \phi_f)}) \\ \mathcal{A}_{\bar{f}} &= a_{\bar{f}} (1 + r_f e^{i(\delta_f - \phi_f)}) \end{aligned} \Rightarrow \mathcal{A}_{CP}^{\mathrm{dir}} = -\frac{2 r_f \sin \delta_f \sin \phi_f}{1 + r_f^2 + 2 r_f \cos \delta_f \cos \phi_f} \end{aligned}$

 A_{CP}^{ind} is universal to a good approximation: Grossman, Kagan, Nir, PRD **75**, 036008 (2007)

$$\begin{split} \Delta A_{CP} &\equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) \\ &\simeq \Delta A_{CP}^{\text{dir}} + \frac{\Delta \langle t \rangle}{\tau} A_{CP}^{\text{ind}}, \text{ where } \Delta \langle t \rangle = \langle t(K^+K^-) \rangle - \langle t(\pi^+\pi^-) \rangle \\ \text{Small } \Delta \langle t \rangle / \tau \Rightarrow \Delta A_{CP} \simeq \Delta A_{CP}^{dir}, \text{ since in SM } A_{CP}^{\text{ind}} < 1\%. \end{split}$$

・ロト・西ト・ヨー くゆ・ ・ロー

Non-leptonic charm decays and CP Violation

12 / 22

Outline

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Recent Results from CDF and LHCb

CDF (90% c.l.): $-0.63\% \le A_{CP}(D^0 \to K^+K^-) \le 0.15\%$ $-0.21\% \le A_{CP}(D^0 \to \pi^+\pi^-) \le 0.65\%$ T. Aaltonen et al. PRD, **85**, 012009 (2012)

LHCb Result $(0.62 f b^{-1} \text{ of data collected in 2011})$: $\Delta A_{CP} = [-0.82 \pm 0.21(\text{stat}) \pm 0.11(\text{syst})]\%$ $\Delta \langle t \rangle / \tau = [9.83 \pm 0.22(\text{stat}) \pm 0.19(\text{syst})]\%$ R. Aaij et al. PRL **108**, 111602 (2012)

CDF Update (Feb 2012):

 $\begin{array}{l} \Delta A_{CP} = [-0.62 \pm 0.21 (\mathrm{stat}) \pm 0.10 (\mathrm{syst})]\% \\ \Delta \langle t \rangle / \tau \sim (26 \pm 1)\% \end{array}$

CDF + LHCb (Assuming uncorrelated errors):

 $\Delta A_{CP}^{
m dir} = (-0.67 \pm 0.16)\%, \ \Delta A_{CP}^{
m ind} = (-0.02 \pm 0.22)\%.$

CDF Note 10784 (CPV at $\sim 3.8\,\sigma)$

Non-leptonic charm decays and CP Violation

13/22

Outline

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments

Direct CP Asymmetries using flavor SU(3)

Crude SM estimate of A_{CP}

 $\begin{array}{l} \mbox{CPV penguin in SM:} \\ P_b = p \, e^{i\delta} \, e^{-i\gamma}; \\ \gamma = \mbox{Arg}[V^*_{ub}]; \\ |V^*_{cb}V_{ub}| \sim \mathcal{O}(\lambda^5); \\ \mbox{(Large CKM suppression)} \end{array}$

U-Spin symmetry: $A_{CP}(K^+K^-) \approx -A_{CP}(\pi^+\pi^-)$

$$\Delta A_{CP} \sim$$
 4 $rac{p}{|\mathcal{T}|} \sin \delta \sin \gamma \;, \quad p \ll |\mathcal{T}|$

Perturbative QCD:

 $\frac{P}{|T|} \sim \mathcal{O}(10^{-4}) \text{ (CKM suppression: } \frac{|V_{cb}||V_{ub}|}{|V_{cs}||V_{us}|} \sim \mathcal{O}(\lambda^4))$ $\Rightarrow \Delta A_{CP} \sim 10^{-4} \text{ (sin } \gamma, \sin \delta \sim \mathcal{O}(1))$ Observed ΔA_{ce} is at least on order of magnitude birbary

Observed ΔA_{CP} is at least an order of magnitude higher: Good chance that it is new physics. Non-leptonic charm decays and CP Violation

14 / 22

Outline

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments

Direct CP Asymmetries using flavor SU(3)

New physics?

 P_b in $D \rightarrow PP$ has large CKM suppression. Also P_b can't benefit from mass of the *b* quark in the loop. In contrast, penguin in $B \rightarrow PP$ has the heavy top quark in the loop.

Long-distance effects and final state rescattering may provide valuable input. However, calculable-QCD effects using factorization fall short of explaining the observed value of ΔA_{CP} . Cheng and Chiang, PRD **85**, 034036 (2012)

New-physics enhancements are therefore natural to think of: Isidori et al., PLB, **711**, 46 (2012): Large NP generically produces sizable CPV in $D - \overline{D}$ mixing: test at LHCb. Wang and Zhu, PLB, **709**, 362 (2012): Up FCNCs or fourth

generation quarks?: Additional bounds from top quark physics. See also Rozanov and Vysotsky, arXiv:1111.6949.

Hochberg and Nir, arXiv:1112.5268: Up-flavor non-universal coupling + extra scalar doublet as the source for both Large ΔA_{CP} and forward-backward asymmetry in $t\bar{t}$ production.

Non-leptonic charm decays and CP Violation

15 / 22

Outline

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments

Direct CP Asymmetries using flavor SU(3)

Penguin Enhancement

Numerous other new-physics ideas including supersymmetry, minimal flavor violation, etc. arXiv:1202.3300, 1202.5038, 1203.4218, 1204.1046, etc.

However, $s \rightarrow d$ penguin in $K \rightarrow 2\pi$ has been known to be a probable source of $\Delta I = 1/2$ enhancement: not calculable perturbatively. Golden and Grinstein, PLB, **222**, 501 (1989) Since m_c is close to Λ_{QCD} , some amplitudes that are formally $1/m_c$ suppressed, may turn out to be large experimentally. Brod, Kagan and Zupan, arXiv:1111.5000

Non-perturbative calculations: difficult + often associated with sizeable uncertainties. Cannot rule out P_b > crude SM expectation. Li, Lu and Yu, arXiv:1203.3120; See also Franco, Mishima and Silvestrini, arXiv:1203.3131

We adopt a phenomenological method, extract P_b from data, and predict CP asymmetries in other SCS channels. See also Pirtskhalava and Uttayarat, arXiv:1112.5451

Non-leptonic charm decays and CP Violation

16 / 22

Outline

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments

Direct CP Asymmetries using flavor SU(3)

ΔA_{CP} in flavor SU(3)

We introduce P_b as the source of CPV in the flavor-SU(3) model discussed earlier:

$$A_{CP}(f) = \frac{2 p |T_f| \sin \gamma \sin(\delta - \phi_T^f)}{|T_f|^2 + p^2 + 2 p |T_f| \cos \gamma \cos(\delta - \phi_T^f)};$$

In $D^0 \to \pi^+ \pi^-$: $T_{\pi^+\pi^-} = |T_{\pi^+\pi^-}| e^{i\phi_T^{\pi^+\pi^-}} = -\lambda(T_{\pi} + E) + (P + PA)$ Note: Tiny weak phase of tree can give $\mathcal{O}(\lambda^4)$ corrections. PA_b (penguin annihilation, $c \to b \to u$) neglected. CKM angle $\gamma = 76^\circ$. Unknowns: p and δ .

One may extract p as a function of δ using: $\Delta A_{CP}|_{CDF+LHCb} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$ BB, M. Gronau, J. Rosner, PRD **85**, 054014 (2012) (Updated with CDF + LHCb combined results in this talk.) (See also talk by M. Gronau at FPCP 2012, Hefei, China.) Non-leptonic charm decays and CP Violation

17 / 22

Outline

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Results:

90% c.l. CDF bounds on $A_{CP}(K^+K^-)$ and $A_{CP}(\pi^+\pi^-)$: $\Rightarrow -2.64 \le \delta \le 0.41$

Non-leptonic charm decays and CP Violation

18 / 22

Outlin

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments

Direct CP Asymmetries using flavor SU(3)

Summary and Conclusions

 $\Delta A_{CP} = (0.67 \pm 0.16)\%$; 68% c.l. band in blue , 90% c.l. band in green . For a large range of δ : $p < 2 \times 10^{-9} GeV$; $p/|T_{K^+K^-}| \sim 2 \times 10^{-3}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

 $A_{CP}(K^+K^-)$ and $A_{CP}(\pi^+\pi^-)$

 A_{CP} vs δ using $p - \delta$ constraint 68% c.l. band in **blue** . 90% c.l. band in **green** ,

U-spin is broken by P + PA!For a large range of δ : $A_{CP}(K^+K^-) < 0,$ $A_{CP}(\pi^+\pi^-) > 0,$ $|A_{CP}(K^+K^-)| < |A_{CP}(\pi^+\pi^-)|$

To pinpoint δ : Need to improve individual A_{CP} error bars. Non-leptonic charm decays and CP Violation

19 / 22

Outline

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

A_{CP} predictions: $K^+\overline{K}^0$ and $\pi^0\pi^0$

 A_{CP} vs δ using $p - \delta$ constraint **68%** c.l. band in **blue**, **90%** c.l. band in **green**.

 $A_{C\!P}$ in $K^+\overline{K}^0$ and $\pi^0\pi^0$ are correlated .

 $|A_{CP}| < 1\%$ over a large range of δ .

Belle Result from 2010: $A_{CP}(K^+\overline{K}^0) =$ $(-0.16 \pm 0.58 \pm 0.25)\%$. Non-leptonic charm decays and CP Violation

20 / 22

Outlin

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

A_{CP} in SCS decays

 $D^+ \rightarrow K^+ \overline{K}^0$ and $D^0 \rightarrow \pi^0 \pi^0$ are good targets for A_{CP} measurements ($\delta B/B \sim 4\%, 6\%$).

 A_{CP} in D_s^+ decays are harder to predict ($\delta B/B > 10\%$).

In our model $A_{CP} = 0$ in $D^0 \to K^0 \overline{K}^0$ and $D^+ \to \pi^+ \pi^0$.

If a non-zero $A_{CP}(K^0\overline{K}^0)$ is measured, then one has to add PA_b (annihilation penguin.)

Bose symmetry $\Rightarrow \pi^+\pi^0$ final state is pure I = 2. $D^+ \rightarrow \pi^+\pi^0$ has to come from $\Delta I = 3/2$ operators.

SM penguins are $\Delta I = 1/2!$ $A_{CP}(\pi^+\pi^0) \gtrsim 0.1\%$ is difficult to generate in SM. Thus, need new-physics amplitudes with both strong and weak phases different from SM tree. Grossman, Kagan and Zupan, arXiv:1204.3557.

See also Feldmann, Nandi and Soni, arXiv:1202.3795 and Brod, Grossman, Kagan and Zupan, arXiv:1203.6659 for other approaches.

Non-leptonic charm decays and CP Violation

21 / 22

Outline

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

Summary and Conclusions

- CF $D \rightarrow PP$ decays fit well to a flavor-SU(3) framework.
- A model for SU(3) breaking in SCS D⁰ → PP decays in the absence of GIM cancellation in penguins.
- $D \rightarrow PV$ decays are interesting, but more data needed.
- Flavor-SU(3) is successful in explaining *I* = 0 dominance in D⁰ → π⁰π⁺π[−] Dalitz plot.
- LHCb and CDF ΔA_{CP} measurements are commensurate with the SM: need penguin enhancement.
- A_{CP} in $D^+ \to K^+ \overline{K}^0$ and $D^0 \to \pi^0 \pi^0$ predicted
- Reducing error on individual A_{CP} can lead to better prediction of A_{CP} in other channels
- ► $A_{CP} \neq 0$ in $D^0 \rightarrow K^0 \overline{K}^0$ needs PA_b (assumed absent in current framework)
- ► $A_{CP} \neq 0$ in $D^+ \rightarrow \pi^+ \pi^0$ needs new dynamics with both weak and strong phases different from SM tree
- ► Study A_{CP} in $D \to PV$ channels such as $D^0 \to \rho \pi, K^*K$, $D^+ \to \phi \pi^+$, etc

Non-leptonic charm decays and CP Violation

22 / 22

Outline

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

A_{CP} from P + PA

Small relative weak phase between $V_{cd}^* V_{ud} = \lambda_d \simeq -\lambda$ and $V_{cs}^* V_{us} = \lambda_s \simeq \lambda$ doesn't change A_{CP} appreciably! CKM Unitarity: $V_{cd}^* V_{ud} + V_{cs}^* V_{us} + V_{cb}^* V_{ub} = 0$ $\sin \phi = \sin[\operatorname{Arg}(\lambda_s \lambda_d^*)] \simeq \frac{|V_{cb}||V_{ub}|}{|V_{cs}||V_{us}|} \sin \gamma = -6.8 \times 10^{-4}$ In general:

$$A = a \left(1 + r e^{i\delta} e^{i\phi}\right), \qquad \overline{A} = a \left(1 + r e^{i\delta} e^{-i\phi}\right)$$
$$A_{CP} = -\frac{2r \sin \delta \sin \phi}{1 + r^2 + 2r \cos \delta \cos \phi}.$$

$$|A_{CP}(D \to \pi^+\pi^-, K^+K^-)| \sim (1-2) \times 10^{-4}.$$

Exact answer depends on relative strong phase between $P_d + PA_d$ and $P_s + PA_s$.

Similarly small A_{CP} in D^+ and D_s^+ decays from interference between T, C and A.

Non-leptonic charm decays and CP Violation

23 / 22

Outline

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

 ΔA_{CP} from LHCb measurement

 $A_{\text{Raw}}(f) = A_{CP}(f) + A_D(f) + A_D(\pi_s) + A_P(D^*)$

Detection asymmetry in D^0 , zero for f self-conjugate. Detection asymmetry of soft pions from the D^* decay chains. D^* production asymmetry.

To first order, these cancel in the difference:

$$egin{aligned} \Delta A_{CP} &= A_{ ext{Raw}}(K^+K^-) - A_{ ext{Raw}}(\pi^+\pi^-) \ &= A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) \ &A_{CP} \simeq A_{CP}^{ ext{dir}} + rac{\langle t
angle}{ au} A_{CP}^{ ext{ind}} \end{aligned}$$

 $A_{CP}^{
m ind}$ is universal and small. $\langle t
angle / au \sim 10\%$ for LHCb.

Thus: $\Delta A_{CP} \simeq A_{CP}^{\mathrm{dir}}(K^+K^-) - A_{CP}^{\mathrm{dir}}(\pi^+\pi^-)$.

LHCb + CDF:
$$\Delta A_{CP}^{dir} = (-0.67 \pm 0.16)\%$$
;
 $\Delta A_{CP}^{ind} = (-0.02 \pm 0.22)\%$.

Non-leptonic charm decays and CP Violation

24 / 22

Outlin

Why study charm?

Part 1: D decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)

 $D^0 \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot: ρ^{\pm} and ρ^0 resonances. BABAR: Gaspero+ PRD **78**, 014015 (2008).

I = 0 dominance reported: A = 0 along symmetry axes.

 $M^{2}(AB) = (p_{A} + p_{B})^{2}$. ρ Resonance bands between dashed lines Symmetry Axes: Green : $p_{\pi}^{-} = p_{\pi}^{0}$, Blue : $p_{\pi}^{+} = p_{\pi}^{-}$, Purple : $p_{\pi}^{0} = p_{\pi}^{+}$. I = 0 part antisymmetric under $\pi_A \leftrightarrow \pi_B$: 0 along symmetry axes.

Non-leptonic charm decays and CP Violation

25 / 22

Outline

Why study charm?

Part 1: *D* decays Flavor-SU(3) 2-body decays 3-body decays

Part 2: CP Asymmetries

> Recent Developments Direct CP Asymmetries using flavor SU(3)

Summary and Conclusions

Flavor SU(3) agrees with this I = 0 dominance! BB, C. -W. Chiang, J. Rosner, PRD **81**, 096008 (2010).

Flavor SU(3) leads to correct strong phases between interfering amplitudes thereby giving cancellations in appropriate places.

 2.3 ± 0.8

1 = 2

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

 3.58 ± 0.29

Non-leptonic charm decays and CP Violation

26 / 22

Outline

Why study charm?

Part 1: D decays

2-body decays 3-body decays

Part 2: CP Asymmetries

Recent Developments Direct CP Asymmetries using flavor SU(3)