CHARM2012 - 5" International Workshop on Charm Physics - 14-17 May 2012, Honolulu, Hawai'i Rare Decays, Mixing and CP violation Potential at SuperB

17/05/2012 Gianluca Inguglia Queen Mary, University of London g.inguglia@qmul.ac.uk On Behalf of the Super*B* Collaboration

Rare Decays, Mixing and CP Violation: Outline

1

Rare Decays

Mixing

CP Violation

Rare Decays, Mixing and CP Violation

2

 $\rightarrow \text{Rare Decays} \\ D^{0} \rightarrow \gamma \gamma, D^{0} \rightarrow \mu \mu, D^{0} \rightarrow ull$

Mixing

CP Violation

 $B(D^{0} \rightarrow \gamma \gamma) < 2.7 \times 10^{-5}$ CLEO Collaboration: PRL **90** 101801 (2003) $B(D^{0} \rightarrow \gamma \gamma) < 2.2 \times 10^{-6} \quad 90\% CL$ BaBar Collaboration: arXiv:1110.6480v1 (appr. by PRD) $B(D^{0} \rightarrow \gamma \gamma): 0.5 \times 10^{-7} \quad (20 \ fb^{-1})$ BESIII Collaboration: arXiv:0809.1869v1 $B(D^{0} \rightarrow \gamma \gamma): 500 \ fb^{-1}at \quad \Psi(3770)$ SuperB Collaboration for evaluation G. INGUGLIA - CHARM 2012 - 5th WORKSHOP ON CHARM PHYSICS - 14/17 MAY. HONOLULU - Hawai'i

 $\rightarrow \mu^{\dagger} \mu^{\dagger}$

<u>Why? Test for $\Delta C=1$ weak neutral current</u>

 $B(D^{0} \rightarrow \mu^{+}\mu^{-}) \simeq B(D^{0} \rightarrow \mu^{+}\mu^{-})_{LD} = 3 \times 10^{-5} B(D^{0} \rightarrow \gamma \gamma)$

4

BURDMAN & SHIPSEY ArXiv:hep-ph/0310076

- SD contribution (~10⁻¹⁸) allows for NP enhancements, but LD need to be "under control"
- LD contribution related to the 2-photon channel need to be understood to interpret any signal found

Why? Test for ΔC=1 weak neutral current

	nrXiv:1008	.1541v1	
Channel SuperB	Sensitivity	BR (th.)	UL (expt.)
$D^0 o \pi^0 \ell^+ \ell^-$	$2 imes 10^{-8}$	$0.8 imes 10^{-6}$	4.5×10^{-5} (CLEO)
$D^+ o \pi^+ \ell^+ \ell^-$	1×10^{-8}	$2 imes 10^{-6}$	$< 3.9 \times 10^{-6}$ (D0)
$D^0 o \pi^0 e^\pm \mu^\mp$	2×10^{-8}	_	
$D^+ \rightarrow h^- \ell^+ \ell^+ \ (h = \pi, K)$	1×10^{-8}	_	$< 3.6 \times 10^{-6}$ (CLEO)
$D^+ ightarrow h^- e^\pm \mu^\mp \ (h=\pi,K)$	1×10^{-8}	_	$< 3.4 \times 10^{-6}$ (CLEO)

6

<u>Why? Test for $\Delta C=1$ weak neutral current</u>

	arXiv:1008	.1541v1	
Channel SuperB	Sensitivity	BR (th.)	UL (expt.)
$D^0 o \pi^0 \ell^+ \ell^-$	2×10^{-8}	$0.8 imes 10^{-6}$	4.5×10^{-5} (CLEO)
$D^+ \to \pi^+ \ell^+ \ell^-$	1×10^{-8}	$2 imes 10^{-6}$	$< 3.9 \times 10^{-6}$ (D0)
$D^0 o \pi^0 e^\pm \mu^\mp$	$2 imes 10^{-8}$	—	
$D^+ ightarrow h^- \ell^+ \ell^+ \ (h=\pi,K)$	1×10^{-8}	—	$< 3.6 \times 10^{-6}$ (CLEO)
$D^+ ightarrow h^- e^\pm \mu^\mp \; (h=\pi,K)$	1×10^{-8}	—	$< 3.4 \times 10^{-6}$ (CLEO)

Rare Decays, Mixing and CP Violation

Rare Decays

→Mixing x_D, y_D : BaBar, SuperB at Y(4S), SuperB+BESIII, SuperB at $\Psi(3770)$

CP Violation

Charm Mixing: an introduction

Neutral meson systems exhibit *mixing* of mass eigenstates |P_{1,2}> where:

$$i\frac{d}{dt}\binom{|P_{1}\rangle}{|P_{2}\rangle} = \begin{pmatrix} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*} & M_{22}^{*} - \frac{i}{2}\Gamma_{22}^{*} \end{pmatrix} \binom{|P^{0}\rangle}{|P^{0}\rangle} = H_{eff}\binom{|P^{0}\rangle}{|P^{0}\rangle}$$

$$H_{eff} = M - \frac{i}{2} \Gamma \qquad \qquad M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22} \quad \leftarrow \quad CPT \quad INVARIANCE$$

$$H_{eff} = M - \frac{i}{2} \Gamma \qquad \qquad M_{11} = M_{22}, \Gamma_{11} = \Gamma_{22}, \Im[\frac{\Gamma_{12}}{M_{12}}] = 0 \quad \leftarrow \quad CP \quad INVARIANCE$$

$$\Im[\frac{\Gamma_{12}}{M_{12}}] = 0 \quad \leftarrow \quad T \quad INVARIANCE$$
Mixing is often expressed in terms of the two parameters:
$$x_D = x = \frac{\Delta M}{\Gamma}$$

$$y_D = y = \frac{\Delta \Gamma}{2\Gamma}$$

Charm Mixing: x_D and y_D from BaBar

BaBar main charm mixing results combined into average values for x_D and y_D

- χ^2 minimization technique
- Correlation effects included in calculations –
- Results based on no CPV assumption

(x'²,y') from WS D⁰ → K⁺ π⁻decays
(x",y") from TDDP analysis of D⁰ → K⁺ π⁻ π⁰ *y*_{CP} from tagged/untagged D⁰ → h⁺h⁻ decays
(x_D, y_D) from the combined golden channels

Charm Mixing: x_D and y_D from BaBar

BaBar main charm mixing results combined into average values for x_D and y_D

- χ^2 minimization technique
- Correlation effects included in calculations –
- Results based on no CPV assumption

• $(x^{\prime 2}, y^{\prime})$ from WS $D^{0} \rightarrow K^{+} \pi^{-}$ decays • $(x^{\prime\prime}, y^{\prime\prime})$ from TDDP analysis of $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ • ycp from tagged/untagged $D^{0} \rightarrow h^{+}h^{-}$ decays • (x_{D}, y_{D}) from the combined golden channels

Super*B* (4S only) projection of *BaBar* main charm mixing results combined into average values for x_D and y_D

- χ^2 minimization technique
- Correlation effects included in calculations –
- Results based on no CPV assumption

 (x'^2, y') from WS $D^0 \rightarrow K^+ \pi^-$ decays (x'', y'') from TDDP analysis of $D^0 \rightarrow K^+ \pi^- \pi^0$ y_{CP} from tagged/untagged $D^0 \rightarrow h^+h^-$ decays (x_D, y_D) from the combined golden channels

Super*B* (4S only) projection of *BaBar* main charm mixing results combined into average values for x_D and y_D combined with expectation from BESIII strong phase measurements

- χ^2 minimization technique
- Correlation effects included in calculations –
- Results based on no CPV assumption

• (x'^2, y') from WS $D^0 \rightarrow K^+ \pi^-$ decays • (x'', y'') from TDDP analysis of $D^0 \rightarrow K^+ \pi^- \pi^0$ • y_{CP} from tagged/untagged $D^0 \rightarrow h^+h^-$ decays • (x_D, y_D) from the combined golden channels

values for \dot{x}_{D} and \dot{y}_{D} end expectation of strong phase measurements

- χ^2 minimization technique
- Correlation effects included in calculations –
- Results based on no CPV assumption

 (x'^2, y') from WS $D^0 \rightarrow K^+ \pi^-$ decays (x'', y'') from TDDP analysis of $D^0 \rightarrow K^+ \pi^- \pi^0$ *y*cP from tagged/untagged $D^0 \rightarrow h^+h^-$ decays (x_D, y_D) from the combined golden channels

12

Rare Decays, Mixing and CP Violation

Rare Decays

Mixing

 \rightarrow CP Violation Indirect, direct, Δa_{cp} , Time-Dependent CPV

Indirect CP Violation in charm

15

Effective values: $D^{0} \rightarrow (x_{D}^{+}, y_{D}^{+})$ $\overline{D^{0}} \rightarrow (\overline{x_{D}}, \overline{y_{D}})$

Super*B* will be sensitive at 3 σ level to a difference

 $x_{D}^{+} - x_{D}^{-} (y_{D}^{+} - y_{D}^{-})$

of 5(3) x 10^{-4} in the average x (y) value.

If observed and if they were due to *CPV* in mixing they would provide a measurement of

$$x_{D}^{+} \simeq |q_{D}/p_{D}| x_{D}$$

$$x_{D}^{-} \simeq |p_{D}/q_{D}| x_{D}$$

$$a_{z} = \frac{z^{+} - z^{-}}{(z^{+} + z^{-})} \approx \frac{1 - |q_{D}/p_{D}|^{2}}{1 + |q_{D}/p_{D}|^{2}}$$

$$a_{z} \neq 0 \rightarrow CP \text{ is violated in mixing}$$

Super*B* estimates for uncertainties in *CP* violation mixing parameters

Strategy	Decay	$\sigma(q_D/p_D) imes 10^2$	$\sigma(\phi_{\scriptscriptstyle M})^\circ$				
HFAG (direct <i>CPV</i> allowed):							
Global χ^2 fit	<All modes $>$	± 18	± 9				
Asymmetries a_z :							
x_D	<All modes $>$	± 1.8	_				
y_D	<All modes $>$	± 1.1	_				
y_{CP}	$K^+ K^-$	± 3.8	_				
y'	$K^+\!\pi^-$	± 4.9	_				
$x^{\prime 2}$	$K^+\!\pi^-$	± 4.9	_				
$x^{\prime\prime}$	$K^+\pi^-\pi^0$	± 5.4	_				
y''	$K^+\pi^-\pi^0$	± 5.0	_				
TDDP (CPV allowed):							
Model-dependent	$K^0_S h^+ h^-$	± 8.4	± 3.3				
BES III DP model	$K^0_S h^+ h^-$	± 3.7	± 1.9				
$\operatorname{Super} B$ DP model	$K^0_S h^+\!h^-$	± 2.7	± 1.4				
SL Asymmetries a_{SL} :							
75 ab^{-1} at $\Upsilon(4S)$	$X\ell\nu_\ell$	± 10					
500 fb ⁻¹ at $\psi(3770)$	$K\pi$	± 10					
500 fb ⁻¹ at $\psi(3770)$	$X\ell\nu_\ell$	TBD					

Direct CP Violation in charm

$$a_{CP}^{f} = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D^{0}} \to \overline{f})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D^{0}} \to \overline{f})} \qquad f = \overline{f} = K^{+} K^{-}(K^{0}), \pi^{+} \pi^{-}(\pi^{0})$$

Standard Model expectation: $a_{CP} \approx O(10^{-5} - 10^{-4})$

SuperB sensitivity to CPV : σ =3x10⁻⁴

The same decay channels have already shown hints for CPV in charm

CP Violation in charm, the closest picture 0.02 $\Delta \boldsymbol{a}_{\text{CP}}^{\text{dir}}$ HFAG-charm ∆A_{CP} BaBar March 2012 0.015 ΔA_{CP} Belle ΔA_{CP} CDF Prelim. 0.01 🔨 A_ BaBar A_n Belle 0.005 0 -0.005 -0.01 -0.015 -0.02 -0.02 -0.015 -0.01 -0.005 0.01 0 0.005 0.015 0.02 a^{ind} Data consistent with no CP violation at 0.006% CL *) Are we really observing *CP* violation in charm? *) Could SM account for this asymmetry or NP is showing up? *) Is it possible to go beyond this picture?

• Theorists are suggesting to double check these results by measuring final states including neutrals (see J. Brod, A. L. Kagan, J. Zupan- ArXiv: 1111.5000)

Summary

Rare Decays

- Rare decays provide information on new physics.
- LD contribution play an important role in $D^0 \rightarrow \gamma \gamma$ and $D^0 \rightarrow \mu^+ \mu^-$ and need to be understood in order to interpret any new physics signal.
- D⁰→ue⁺e⁻ transitions may help to discriminate between SUSY models, however measurements could be challenging in hadron machines.

Mixing

- B-factories have provided proof of charm mixing.
- Current limits will be largely improved in the next decade.
- At charm threshold (SuperB+BESIII) the strong phase can be measured, adding more "strong" constraints on the mixing parameters.

CP Violation

- LHCb+CDF: is it really *CPV*? More work is needed to understand the origin of the observed asymmetry.
- SuperB can measure the effective values of the mixing parameters.
- A time-dependent analysis is a tool to look for CPV in charm and will open the door to measurements of the properties of the charm unitarity triangle.

...Many Thanks...