Exotic baryons from a heavy meson and a nucleon

Yasuhiro Yamaguchi¹

in collaboration with Shunsuke Ohkoda¹, Shigehiro Yasui ², Atsushi Hosaka¹ RCNP¹, KEK²

Charm2012 The 5th International Workshop on Charm physics

Honolulu, Hawaii, 14-17 May 2012

Introduction

- Exotic hadrons
- Heavy Quark Symmetry
- π exchange interaction
- **(a)** $\overline{D}N$ and BN states
- DN and $\bar{B}N$ states
- Summary

N $\overline{D}^{(*)}$ or $B^{(*)}$ q $\bar{Q}q$

$\overline{D}N(BN)$ molecule.

 $D^{(*)}$ or $\bar{B}^{(*)}$ \overline{q} $Q\bar{q}$

$DN(\bar{B}N)$ molecule.

What is the exotic hadron? Introduction

Exotic hadron

- They have an **exotic quantum number** which cannot be reached by quark model.
- Multiquark component is essential.

 $Pentaquark \Theta^+ \quad \text{D.Diakonov et al.Z.Phys.A359,305, T.Nakanoet al.Phys.Lett.91,012002}$

- Observation of Θ^+ triggered the study of exotic hadrons.
- Because Θ^+ has $\underline{S = +1}$, it cannot be described by simple baryon. $\Rightarrow \underline{uudd\bar{s}}$?

 $Z_b(10608), Z_b(10653)$ I.Adachi *et al.*, arXiv:1105.4583, Phys.Rev.Lett.108,122001

- They have electric charge. \Rightarrow Not simple $b\bar{b}$.
- $\underline{b}\overline{b}q\overline{q}?, B \overline{B}^* (B^* \overline{B}^*)$ molecular state?

Multiquark system ($qqqq\bar{q}, qq\bar{q}\bar{q}, ...$) may form various structures.

Multiquark system: Molecular state Introduction

• Multiquark system may compose partial **cluster** structures $(qqq + q\bar{q})$ and they form **hadronic molecule**.

Question: (Molecular state really exists?)

To investigate **meson-baryon** (present talk) and **meson-meson** (**Ohkoda's talk**) systems, we find molecules.

Multiquark system: Molecular state Introduction

• Multiquark system may compose partial **cluster** structures $(qqq + q\bar{q})$ and they form **hadronic molecule**.

Question: (Molecular state really exists?)

To investigate **meson-baryon** (present talk) and **meson-meson** (**Ohkoda's talk**) systems, we find molecules.

We focus on π exchange interaction to make a hadronic molecule.

Heavy meson and Heavy Quark Symmetry Introduction

We consider heavy meson(D, B) and Nucleon molecular state because D, B can be coupled with π due to Heavy Quark Symmetry.

• Heavy Quark Symmetry (HQS) N.Isgur, M.B.Wise, PRL66, 1130 This symmetry appears in the heavy quark mass limit $(m_O \to \infty).$

Spin-spin interaction $\longrightarrow 0$

Heavy pseudoscalar meson $P(0^-)$ and Heavy vector meson $P^*(1^-)$ are degenerate.

Indeed, mass splitting between P and P^* is very small.

$$m_{D^*} - m_D \sim 140 \text{ MeV}$$
$$m_{B^*} - m_B \sim 45 \text{ MeV}$$
$$m_{K^*} - m_K \sim 400 \text{ MeV}$$

 \rightarrow This degenerate provides $PP^*\pi$ vertex.

π exchange interaction: Tensor force

- π exchange(**Tensor force**) mixes $\overline{D}N$ and \overline{D}^*N and generates a strong attractive force.
- This mechanism is similar to Deuteron system $({}^{3}S_{1} {}^{3}D_{1})$. Binding energy~2.2 MeV, Relative radii~4 fm
- Tensor force makes $\bar{D}N$ loosely bound states?

Purpose

• Searching for **exotic baryons** formed by Heavy meson-Nucleon molecule with **OPEP**

- We employ π , ρ , ω exchange interactions. \rightarrow comparing the result when π exchange is used with the result when $\pi \rho \omega$ exchange is used.
- We study **bound** and **scattering** states.
- To obtain binding energies and properties of resonance, we solve the coupled-channel Schrödinger equations for PN and P^*N systems.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Heavy quark effective theory R.Casalbuoni et al. PhysRept.281,145(1997) • $\mathcal{L}_{\pi H H} = i g_{\pi} \text{Tr} \left[H_b \gamma_{\mu} \gamma_5 \mathcal{A}_{ba}^{\mu} \bar{H}_a \right]$ • $\mathcal{L}_{vHH} = -i\beta \operatorname{Tr} \left[H_b v^{\mu}(\rho_{\mu})_{ba} \bar{H}_a \right] + i\lambda \operatorname{Tr} \left[H_b \sigma^{\mu\nu} F_{\mu\nu}(\rho)_{ba} \bar{H}_a \right]$ $H_{a} = \frac{1+\not p}{2} \begin{bmatrix} P_{a\mu}^{*} \gamma^{\mu} - P_{a} \gamma^{5} \end{bmatrix}, \quad \bar{H}_{a} = \gamma^{0} H_{a} \gamma^{0}$ vector pseudoscalar $\mathcal{A}^{\nu} = \frac{i}{f_{\pi}} \partial^{\nu} \hat{\pi}, \, \rho_{\mu} = \frac{i g_{v}}{\sqrt{2}} \hat{\rho}_{\mu}, \, F_{\mu\nu}(\rho) = \partial_{\mu} \rho_{\nu} - \partial_{\nu} \rho_{\mu}$ π, ρ, ω Bonn model R.Machleidt et al. Phys Rept.149,1(1987) $\bar{D}^{(*)}$ N• $\mathcal{L}_{\pi NN} = i q_{\pi NN} \bar{N}_b \gamma^5 N_a \hat{\pi}_{ba}$ • $\mathcal{L}_{vNN} = g_{vNN} \bar{N}_b \left(\gamma^{\mu} (\hat{\boldsymbol{\rho}}_{\mu})_{ba} + \frac{\kappa}{2m_N} \sigma_{\mu\nu} \partial^{\nu} (\hat{\boldsymbol{\rho}}^{\mu})_{ba} \right) N_a$

Interactions \overline{DN} and BN states

Heavy quark effective theory R.Casalbuoni et al. PhysRept.281.145(1997) • $\mathcal{L}_{\pi HH} = i \boldsymbol{g}_{\pi} \operatorname{Tr} \left[H_b \gamma_{\mu} \gamma_5 \mathcal{A}^{\mu}_{bc} \bar{H}_a \right]$ • $\mathcal{L}_{vHH} = -i\boldsymbol{\beta} \operatorname{Tr} \left[H_b v^{\mu}(\rho_{\mu})_{ba} \bar{H}_a \right] + i\boldsymbol{\lambda} \operatorname{Tr} \left[H_b \sigma^{\mu\nu} F_{\mu\nu}(\rho)_{ba} \bar{H}_a \right]$ vector pseudoscalar $\mathcal{A}^{\nu} = \frac{i}{f_{\tau}} \partial^{\nu} \hat{\pi}, \, \rho_{\mu} = \frac{i g_{v}}{\sqrt{2}} \hat{\rho}_{\mu}, \, F_{\mu\nu}(\rho) = \partial_{\mu} \rho_{\nu} - \partial_{\nu} \rho_{\mu}$ π, ρ, ω Bonn model R.Machleidt et al. Phys Rept.149,1(1987) $\bar{D}^{(*)}$ N • $\mathcal{L}_{\pi NN} = i \mathbf{g}_{\pi NN} \bar{N}_b \gamma^5 N_a \hat{\pi}_{ba}$ • $\mathcal{L}_{vNN} = \mathbf{g}_{vNN} \bar{N}_b \left(\gamma^{\mu} (\hat{\boldsymbol{\rho}}_{\mu})_{ba} + \frac{\kappa}{2m_N} \sigma_{\mu\nu} \partial^{\nu} (\hat{\boldsymbol{\rho}}^{\mu})_{ba} \right) N_a$ These coupling constants are not free parameter! $(D^* \to D\pi, \text{ leptonic decay of } B, \text{NN data...})$ ・ 同下 ・ 日下 ・ 日下

Form factor and Cut-off parameter $\Lambda_{\bar{D}N \text{ and } BN \text{ states}}$

• Form factor at each vertex

$$F_{\alpha}(\Lambda, \vec{q}\,) = \frac{\Lambda^2 - m_{\alpha}^2}{\Lambda^2 + |\vec{q}\,|^2}$$

- Λ_N is determined to reproduce the properties of deuteron.
- For Λ_P , we assume $\Lambda_P/\Lambda_N = r_N/r_P$. r_N/r_P is obtained from quark model.

$$\left\{ egin{array}{l} \Lambda_D = 1.35 \Lambda_N \ \Lambda_B = 1.29 \Lambda_N \ {
m S.Yasui and K.Sudoh PRD80.034008} \end{array}
ight.$$

Table: Cutoff parameters.

Potentia	l Λ_N [MeV]	$\Lambda_D \; [{ m MeV}]$	$\Lambda_B \; [\text{MeV}]$	
π	830	1121	1070	
π,ρ,ω	846	1142	1091	
		<		
	14-17 May, 2012	Charm2012@Hawaii		

$ar{D}N ext{ and } ar{D}^*N ext{ systems } \ _{ar{D}N ext{ and } BN ext{ states}}$

We investigate $J^P = 1/2^{\pm}, \dots, 7/2^{\pm}$ states with I = 0, 1.

J^P	channels				
$1/2^{-}$	$\bar{D}N(^2S_{1/2})$ $\bar{D}^*N(^2S_{1/2}, {}^4D_{1/2})$				
$1/2^{+}$	$\bar{D}N(^2P_{1/2})$ $\bar{D}^*N(^2P_{1/2}, {}^4P_{1/2})$				
$3/2^-$	$\bar{D}N(^2D_{3/2})$ $\bar{D}^*N(^4S_{3/2}, {}^4D_{3/2}, {}^2D_{3/2})$				
$3/2^{+}$	$\bar{D}N(^2P_{3/2})$ $\bar{D}^*N(^2P_{3/2}, {}^4P_{3/2}, {}^4F_{3/2})$				
$5/2^{-}$	$\bar{D}N(^2D_{5/2})$ $\bar{D}^*N(^2D_{5/2}, {}^4D_{5/2}, {}^4G_{5/2})$				
$5/2^{+}$	$\bar{D}N(^{2}F_{5/2})$ $\bar{D}^{*}N$ $(^{4}P_{5/2}, ^{2}F_{5/2}, ^{4}F_{5/2})$				
$7/2^{-}$	$\bar{D}N(^{2}G_{7/2})$ $\bar{D}^{*}N(^{4}D_{7/2}, ^{2}G_{7/2}, ^{4}G_{7/2})$				
$7/2^{+}$	$\bar{D}N(^2F_{7/2})$ \bar{D}^*N $(^2F_{7/2}, {}^4F_{7/2}, {}^4H_{7/2})$				

• Tensor force, mixing these channels with $\Delta l = 2$, leads to coupled-channel equations.

· □ > · (四 > · (回 > · (回 > ·

Results of $\overline{D}N$ and BN states

Truly exotic state)

Bound state and Resonance

A (10) N (10) N (10)

The bound state with $I(J^P) = 0(1/2^-)$ $\bar{D}N$ and BN states

We found **loosely bound states** with $I(J^P) = 0(1/2^{-})$.

Table: Binding energies and relative distance in $I(J^P) = 0(1/2^-)$ state.

	$\bar{D}N(\pi)$	$\bar{D}N(\pi\rho\omega)$	$BN(\pi)$	$BN(\pi\rho\omega)$
$E_B \; [\mathrm{MeV}]$	1.60	2.13	19.50	23.04
$\langle r^2 \rangle^{1/2} [\text{fm}]$	3.5	3.2	1.3	1.2

- The results of $\pi \rho \omega$ interaction are close to that of π exchange interaction.
 - \rightarrow The π exchange plays an important role and **dominates** this system.
- $E_B(BN) > E_B(\bar{D}N)$ because BB^* strong mixing (small ΔM_{BB^*}) yields a strong attraction (Tensor force).

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Results of $\overline{D}N$ and BN in I = 0 $\overline{D}N$ and BN states

- We found many resonances.
- If $PN P^*N$ mixing is ignored, bound states and resonances vanish.

Results of $\overline{D}N$ and BN in I = 0 $\overline{D}N$ and BN states

Y.Y. S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

DN and $\bar{B}N$ states

 $\bar{D} \to D$

3

<ロ> (日) (日) (日) (日) (日)

 $DN ext{ state } + \Lambda_{ ext{C}}, \pi \Sigma_{ ext{C}} \ _{DN ext{ and } ar{B}N ext{ states}}$

- 4 周 ト - 4 日 ト - 4 日 ト

 ${DN \ {
m state}} + \Lambda_{f C}, \pi \Sigma_{f C} \ _{DN \ {
m and} \ ar BN \ {
m states}}$

We consider only $DN - D^*N$.

 $D^{(*)}N$ molecular state due to π exchange

Results of DN and $\bar{B}N$ in I = 0 $_{DN \text{ and } \bar{B}N \text{ states}}$

- DN state is calculated in analogy with $\overline{D}N$.
- But $V_{\pi} \to -V_{\pi}$, $V_{\omega} \to -V_{\omega}$ due to G-parity.

We found many bound states and resonances! But deeply bound state may be coupled with $\Lambda_{ep} \pi \Sigma_e$ strongly.

Results of DN and $\bar{B}N$ in I = 1 $_{DN \text{ and } \bar{B}N \text{ states}}$

- We found a resonance only in $J^P = 1/2^-$.
- Attraction is not strong because Isospin factor is small.
- $\vec{\tau}_D \cdot \vec{\tau}_N = 1$. For I = 0, $\vec{\tau}_D \cdot \vec{\tau}_N = -3$

Summary

- We investigate exotic baryons from a heavy meson and a nucleon with respecting the Heavy Quark Symmetry.
- We Solve coupled-channel Schrödinger equations and bound states and Resonances are found.
- π exchange dominates this system while vector meson exchange plays a minor role.
- For $\overline{D}N$ state, loosely bound states and resonances are found.
- For DN state, deeply bound states are found. They are coupled with $\Lambda_{\rm C}, \pi \Sigma_{\rm C} \dots \Rightarrow$ Future work
- Tensor force plays a crucial role to produce these molecular states.