Exotic baryons from a heavy meson and a nucleon

Yasuhiro Yamaguchi ${ }^{1}$

in collaboration with
Shunsuke Ohkoda ${ }^{1}$, Shigehiro Yasui ${ }^{2}$, Atsushi Hosaka ${ }^{1}$

$$
\mathrm{RCNP}^{1}, \mathrm{KEK}^{2}
$$

Charm2012 The 5th International Workshop on Charm physics
Honolulu, Hawaii, 14-17 May 2012

Contents

- Introduction
- Exotic hadrons
- Heavy Quark Symmetry

$\bar{D} N(B N)$ molecule.
- π exchange interaction
- $\bar{D} N$ and $B N$ states
- $D N$ and $\bar{B} N$ states
- Summary

$D N(\bar{B} N)$ molecule.

What is the exotic hadron?

Introduction

Exotic hadron

- They have an exotic quantum number which cannot be reached by quark model.
- Multiquark component is essential.

Pentaquark $\boldsymbol{\Theta}^{+} \quad$ D.Diakonov et al.Z.Phys.A359,305, T.Nakanoet al.Phys.Lett.91,012002

- Observation of Θ^{+}triggered the study of exotic hadrons.
- Because Θ^{+}has $\underline{S=+1}$,
it cannot be described by simple baryon. $\Rightarrow \underline{u \boldsymbol{u} d \boldsymbol{d} \bar{s}}$?
$\boldsymbol{Z}_{\boldsymbol{b}}(\mathbf{1 0 6 0 8}), \boldsymbol{Z}_{\boldsymbol{b}} \mathbf{(1 0 6 5 3)} \quad$ I.Adachi et al,,arXiv:1105.4583, Phys.Rev.Lett.108,122001
- They have electric charge. \Rightarrow Not simple $b \bar{b}$.
- $\underline{b \bar{b} q \bar{q} ?, B-\bar{B}^{*}\left(B^{*}-\bar{B}^{*}\right) \text { molecular state? }}$

Multiquark $\operatorname{system}(q q q q \bar{q}, q q \bar{q} \bar{q}, \ldots)$ may form various structures.

Multiquark system: Molecular state Introduction

- Multiquark system may compose partial cluster structures $(\boldsymbol{q} \boldsymbol{q} \boldsymbol{q}+\boldsymbol{q} \overline{\boldsymbol{q}})$ and they form hadronic molecule.

Question: Molecular state really exists?
To investigate meson-baryon (present talk) and meson-meson (Ohkoda's talk) systems, we find molecules.

Multiquark system: Molecular state Introduction

- Multiquark system may compose partial cluster structures $(\boldsymbol{q} \boldsymbol{q} \boldsymbol{q}+\boldsymbol{q} \overline{\boldsymbol{q}})$ and they form hadronic molecule.

Question: Molecular state really exists?
To investigate meson-baryon (present talk) and meson-meson (Ohkoda's talk) systems, we find molecules.

We focus on π exchange interaction to make a hadronic molecule.

Heavy meson and Heavy Quark Symmetry Introduction

We consider heavy meson (D, B) and Nucleon molecular state because D, B can be coupled with π due to Heavy Quark Symmetry.

- Heavy Quark Symmetry (HQS) N.Isgur, M.B.Wise,PRL66,1130 This symmetry appears in the heavy quark mass limit $\left(m_{Q} \rightarrow \infty\right)$.

Spin-spin interaction $\longrightarrow 0$
\{ Heavy pseudoscalar meson $P\left(0^{-}\right)$and $\left\{\right.$ Heavy vector meson $P^{*}\left(1^{-}\right)$are degenerate.
Indeed, mass splitting between P and P^{*} is very small.

$$
\left\{\begin{aligned}
m_{D^{*}}-m_{D} & \sim 140 \mathrm{MeV} \\
m_{B^{*}}-m_{B} & \sim 45 \mathrm{MeV} \\
m_{K^{*}}-m_{K} & \sim 400 \mathrm{MeV}
\end{aligned}\right.
$$

\longrightarrow This degenerate provides $P P^{*} \pi$ vertex.

π exchange interaction: Tensor force Introduction

Tensor force

Hadronic molecule?

- π exchange(Tensor force) mixes $\bar{D} N$ and $\bar{D}^{*} N$ and generates a strong attractive force.
- This mechanism is similar to Deuteron system $\left({ }^{3} S_{1}-{ }^{3} D_{1}\right)$. Binding energy~2.2 MeV, Relative radii~4 fm
- Tensor force makes $\bar{D} N$ loosely bound states?

Purpose

- Searching for exotic baryons formed by Heavy meson-Nucleon molecule with OPEP

- We employ π, ρ, ω exchange interactions.
\rightarrow comparing the result when π exchange is used with the result when $\pi \rho \omega$ exchange is used.
- We study bound and scattering states.
- To obtain binding energies and properties of resonance, we solve the coupled-channel Schrödinger equations for $P N$ and $P^{*} N$ systems.

Interactions
 $\bar{D} N$ and $B N$ states

Heavy quark effective theory R.Casalbuoni et al. PhysRept.281,145(1997)

- $\mathcal{L}_{\pi H H}=i g_{\pi} \operatorname{Tr}\left[H_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{b a}^{\mu} \bar{H}_{a}\right]$
- $\mathcal{L}_{v H H}=-i \beta \operatorname{Tr}\left[H_{b} v^{\mu}\left(\rho_{\mu}\right)_{b a} \bar{H}_{a}\right]+i \lambda \operatorname{Tr}\left[H_{b} \sigma^{\mu \nu} F_{\mu \nu}(\rho)_{b a} \bar{H}_{a}\right]$

$$
\begin{aligned}
& H_{a}= \frac{1+\not \partial}{2}\left[P_{a \mu}^{*} \gamma^{\mu}-P_{a} \gamma^{5}\right], \quad \bar{H}_{a}=\gamma^{0} H_{a} \gamma^{0} \\
& \text { vector pseudoscalar } \\
& \mathcal{A}^{\nu}= \frac{i}{f_{\pi}} \partial^{\nu} \hat{\boldsymbol{\pi}}, \rho_{\mu}=\frac{i g_{v}}{\sqrt{2}} \hat{\boldsymbol{\rho}}_{\mu}, F_{\mu \nu}(\rho)=\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}
\end{aligned}
$$

Bonn model R.Machleidt et al. Phys Rept.149,1(1987)

- $\mathcal{L}_{\pi N N}=i g_{\pi N N} \bar{N}_{b} \gamma^{5} N_{a} \hat{\boldsymbol{\pi}}_{b a}$
- $\mathcal{L}_{v N N}=g_{v N N} \bar{N}_{b}\left(\gamma^{\mu}\left(\hat{\boldsymbol{\rho}}_{\mu}\right)_{b a}+\frac{\kappa}{2 m_{N}} \sigma_{\mu \nu} \partial^{\nu}\left(\hat{\boldsymbol{\rho}}^{\mu}\right)_{b a}\right) N_{a}$

Interactions
 $\bar{D} N$ and $B N$ states

Heavy quark effective theory R.Casalbuoni et al. PhysRept.281,145(1997)

- $\mathcal{L}_{\pi H H}=i \boldsymbol{g}_{\pi} \operatorname{Tr}\left[H_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{b a}^{\mu} \bar{H}_{a}\right]$
- $\mathcal{L}_{v H H}=-i \boldsymbol{\beta} \operatorname{Tr}\left[H_{b} v^{\mu}\left(\rho_{\mu}\right)_{b a} \bar{H}_{a}\right]+i \boldsymbol{\lambda} \operatorname{Tr}\left[H_{b} \sigma^{\mu \nu} F_{\mu \nu}(\rho)_{b a} \bar{H}_{a}\right]$

$$
\begin{aligned}
& H_{a}= \frac{1+\not b}{2}\left[P_{a \mu}^{*} \gamma^{\mu}-P_{a} \gamma^{5}\right], \quad \bar{H}_{a}=\gamma^{0} H_{a} \gamma^{0} \\
& \quad \text { vector pseudoscalar } \\
& \mathcal{A}^{\nu}= \frac{i}{f_{\pi}} \partial^{\nu} \hat{\boldsymbol{\pi}}, \rho_{\mu}=\frac{i g_{v}}{\sqrt{2}} \hat{\boldsymbol{\rho}}_{\mu}, F_{\mu \nu}(\rho)=\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}
\end{aligned}
$$

Bonn model R.Machleidt et al. Phys Rept.149,1(1987)

- $\mathcal{L}_{\pi N N}=i g_{\pi N N} \bar{N}_{b} \gamma^{5} N_{a} \hat{\pi}_{b a}$
- $\mathcal{L}_{v N N}=\boldsymbol{g}_{v N N} \bar{N}_{b}\left(\gamma^{\mu}\left(\hat{\boldsymbol{\rho}}_{\mu}\right)_{b a}+\frac{\kappa}{2 m_{N}} \sigma_{\mu \nu} \partial^{\nu}\left(\hat{\boldsymbol{\rho}}^{\mu}\right)_{b a}\right) N_{a}$

These coupling constants are not free parameter!
($D^{*} \rightarrow D \pi$, leptonic decay of B, NN data...)

Form factor and Cut-off parameter Λ $\bar{D} N$ and $B N$ states

- Form factor at each vertex

$$
F_{\alpha}(\Lambda, \vec{q})=\frac{\Lambda^{2}-m_{\alpha}^{2}}{\Lambda^{2}+|\vec{q}|^{2}}
$$

- Λ_{N} is determined to reproduce the properties of deuteron.
- For Λ_{P}, we assume $\Lambda_{P} / \Lambda_{N}=r_{N} / r_{P}$. r_{N} / r_{P} is obtained from quark model.

$$
\left\{\begin{array}{l}
\Lambda_{D}=1.35 \Lambda_{N} \\
\Lambda_{B}=1.29 \Lambda_{N}
\end{array}\right.
$$

S.Yasui and K.Sudoh PRD80,034008

Table: Cutoff parameters.

Potential	$\Lambda_{N}[\mathrm{MeV}]$	$\Lambda_{D}[\mathrm{MeV}]$	$\Lambda_{B}[\mathrm{MeV}]$
π	830	1121	1070
π, ρ, ω	846	1142	1091

We investigate $J^{P}=1 / 2^{ \pm}, \cdots, 7 / 2^{ \pm}$states with $I=0,1$.

J^{P}	channels	
$1 / 2^{-}$	$\bar{D} N\left({ }^{2} S_{1 / 2}\right)$	$\bar{D}^{*} N\left({ }^{2} S_{1 / 2},{ }^{4} D_{1 / 2}\right)$
$1 / 2^{+}$	$\bar{D} N\left({ }^{2} P_{1 / 2}\right)$	$\bar{D}^{*} N\left({ }^{2} P_{1 / 2},{ }^{4} P_{1 / 2}\right)$
$3 / 2^{-}$	$\bar{D} N\left({ }^{2} D_{3 / 2}\right)$	$\bar{D}^{*} N\left({ }^{4} S_{3 / 2},{ }^{4} D_{3 / 2},{ }^{2} D_{3 / 2}\right)$
$3 / 2^{+}$	$\bar{D} N\left({ }^{2} P_{3 / 2}\right)$	$\bar{D}^{*} N\left({ }^{2} P_{3 / 2},{ }^{4} P_{3 / 2},{ }^{4} F_{3 / 2}\right)$
$5 / 2^{-}$	$\bar{D} N\left({ }^{2} D_{5 / 2}\right)$	$\bar{D}^{*} N\left({ }^{2} D_{5 / 2},{ }^{4} D_{5 / 2},{ }^{4} G_{5 / 2}\right)$
$5 / 2^{+}$	$\bar{D} N\left({ }^{2} F_{5 / 2}\right)$	$\bar{D}^{*} N\left({ }^{4} P_{5 / 2},{ }^{2} F_{5 / 2},{ }^{4} F_{5 / 2}\right)$
$7 / 2^{-}$	$\bar{D} N\left({ }^{2} G_{7 / 2}\right)$	$\bar{D}^{*} N\left({ }^{4} D_{7 / 2},{ }^{2} G_{7 / 2},{ }^{4} G_{7 / 2}\right)$
$7 / 2^{+}$	$\bar{D} N\left({ }^{2} F_{7 / 2}\right)$	$\bar{D}^{*} N\left({ }^{2} F_{7 / 2},{ }^{4} F_{7 / 2},{ }^{4} H_{7 / 2}\right)$

- Tensor force, mixing these channels with $\Delta l=2$, leads to coupled-channel equations.

Results of $\bar{D} \boldsymbol{N}$ and $B N$ states

Truly exotic state

Bound state and Resonance

The bound state with $I\left(J^{P}\right)=0\left(1 / 2^{-}\right)$

$\bar{D} N$ and $B N$ states

We found loosely bound states with $I\left(J^{P}\right)=0\left(1 / 2^{-}\right)$.
Table: Binding energies and relative distance in $I\left(J^{P}\right)=0\left(1 / 2^{-}\right)$state.

$$
\bar{D} N(\pi) \quad \bar{D} N(\pi \rho \omega) \quad B N(\pi) \quad B N(\pi \rho \omega)
$$

$E_{B}[\mathrm{MeV}]$	1.60	2.13	19.50	23.04
$\left\langle r^{2}\right\rangle^{1 / 2}[\mathrm{fm}]$	3.5	3.2	1.3	1.2

- The results of $\pi \rho \omega$ interaction are close to that of π exchange interaction.
\rightarrow The π exchange plays an important role and dominates this system.
- $E_{B}(B N)>E_{B}(\bar{D} N)$ because $B B^{*}$ strong mixing (small $\Delta M_{B B^{*}}$) yields a strong attraction (Tensor force).

Results of $\bar{D} N$ and $B N$ in $I=0$ $\bar{D} N$ and $B N$ states

- We found many resonances.
- If $P N-P^{*} N$ mixing is ignored, bound states and resonances vanish.

-_: Bound state
——: Resonance ($E_{\mathrm{re}}-i \Gamma / 2$) Unit: MeV
Y.Y, S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

Results of $\bar{D} N$ and $B N$ in $I=0$
 $\bar{D} N$ and $B N$ states

$P N-P^{*} N$ mixing plays an important role!

——: Bound state
__ : Resonance ($E_{\mathrm{re}}-i \Gamma / 2$) Unit: MeV
Y.Y, S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 $05 \underline{\underline{\underline{\underline{1}}} 003 \text { (20112) }}$

$D N$ and $\bar{B} N$ states

$$
\bar{D} \rightarrow D
$$

$D N$ state $+\Lambda_{\mathbf{c}}, \pi \Sigma_{\mathbf{c}}$ $D N$ and $\bar{B} N$ states

$D N$ state $+\Lambda_{\mathbf{c}}, \pi \Sigma_{\mathbf{c}}$ $D N$ and $\bar{B} N$ states
$\underline{D N}$ is more complex than $\bar{D} N$.

We consider only $D N-D^{*} N$.

 $D^{(*)} N$ molecular state due to π exchange
Results of $D N$ and $\bar{B} N$ in $I=0$ $D N$ and $\bar{B} N$ states

- $D N$ state is calculated in analogy with $\bar{D} N$.
- But $V_{\pi} \rightarrow-V_{\pi}, V_{\omega} \rightarrow-V_{\omega}$ due to G-parity.

-_: Bound state
-: Resonance ($E{\mathrm{re}}-i \Gamma / 2$) Unit: MeV
We found many bound states and resonances!
But deeply bound state may be coupled with $\Lambda_{c, v} \pi \Sigma_{e}$ strongly $\boldsymbol{z}_{\underline{z}}$

Results of $D N$ and $\bar{B} N$ in $I=1$ $D N$ and $\bar{B} N$ states

- We found a resonance only in $J^{P}=1 / 2^{-}$.
- Attraction is not strong because Isospin factor is small.
- $\vec{\tau}_{D} \cdot \vec{\tau}_{N}=1$. For $I=0, \vec{\tau}_{D} \cdot \vec{\tau}_{N}=-3$

--: Bound state
-_ Resonance ($E_{\mathrm{re}}-i \Gamma / 2$) Unit: MeV

Summary

- We investigate exotic baryons from a heavy meson and a nucleon with respecting the Heavy Quark Symmetry.
- We Solve coupled-channel Schrödinger equations and bound states and Resonances are found.
- π exchange dominates this system while vector meson exchange plays a minor role.
- For $\bar{D} N$ state, loosely bound states and resonances are found.
- For $D N$ state, deeply bound states are found. They are coupled with $\Lambda_{\mathrm{C}}, \pi \Sigma_{\mathrm{C}} \ldots \Rightarrow$ Future work
- Tensor force plays a crucial role to produce these molecular states.

