Dominant $1/m_c$ Contribution to ΔM_D in $D^0 - \overline{D}^0$ Mixing Gagik Yeghiyan Grand Valley State University, Allendale, MI In collaboration with E. Golowich and A.A. Petrov

Charm 2012, Honolulu, Hawaii

A work in progress (preliminary results)

$D^0 - D^0$ within the SM

To the lowest order in perturbation theory:

One usually neglects the loops with b-quarks as $|V_{cb}^* V_{ub}| \ll |V_{cs}^* V_{us}| \approx |V_{cd}^* V_{ud}|$

Within the SM $D^0 - D^0$ mixing occurs by means of two consecutive (effective) $|\Delta C| = 1$ transitions.

$$\mathbf{D}^{0} - \mathbf{D}^{0}: \quad \mathbf{Quantum Mechanical Description}$$

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} = \left(M - \frac{i}{2}\Gamma\right) \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} \quad iM_{11} = M_{22} \text{ and } \Gamma_{11} = \Gamma_{22}$$

$$M_{12} = M_{21}^{\star} \text{ and } \Gamma_{12} = \Gamma_{21}^{\star}.$$

Non-diagonal elements control the mixing: SM $M_{12} - \frac{i}{2}\Gamma_{12} = \frac{1}{2M_D} \langle \overline{D}^0 | H_W^{\Delta C=2} | D^0 \rangle + \frac{1}{2M_D} \sum_n \frac{\langle \overline{D}^0 | H_W^{\Delta C=1} | n \rangle \langle n | H_W^{\Delta C=1} | D^0 \rangle}{M_D - E_n + i\epsilon}$

In the limit of CP-conservation:

$$\Delta M \equiv M_{+} - M_{-} = 2M_{12} \qquad D_{\pm} = \frac{1}{\sqrt{2}} \left(D^{0} \pm \overline{D}^{0} \right)$$
$$\Delta \Gamma \equiv \Gamma_{+} - \Gamma_{-} = 2\Gamma_{12}$$

D⁰ – D⁰ Within the SM to the LO in Perturbation Theory

 ΔM_D and $\Delta \Gamma_D$ vanish in the limit of exact SU(3) flavor symmetry. In the real world flavor SU(3) is broken, so $\Delta M_D \neq 0$ and $\Delta \Gamma_D \neq 0$ however they are suppressed in-powers of m_s / m_c

$$x_{D}^{LO} \equiv \frac{\Delta M_{D}^{LO}}{\Gamma_{D}} = \frac{G_{F}^{2} m_{c}^{2}}{3\pi^{2}} \frac{f_{D}^{2} M_{D}}{\Gamma_{D}} \left(\frac{m_{s}^{4}}{m_{c}^{4}} \right) \sin^{2} \theta_{C} \cos^{2} \theta_{C} \left[\frac{5}{4} \left(C_{2}^{2} - 2C_{1}C_{2} - 3C_{1}^{2} \right) \overline{B}_{D}^{(S)} - C_{2}^{2} B_{D} \right] \approx 1.7 \times 10^{-6}$$

$$HFAG$$

$$x_{D}^{exp} = (0.65 \pm 0.19)\%$$

The existing experimental data

 $x_{D} \equiv \Delta M_{D} / \Gamma_{D} = (0.65 \pm 0.19)\%$ $y_{D} \equiv \Delta \Gamma_{D} / (2 \Gamma_{D}) = (0.74 \pm 0.12)\%$

may be explained by

• (Short-distance) New Physics contribution to ΔM_D and (in certain SM extensions only) to $\Delta \Gamma_D$

• Long – distance SM contribution to ΔM_D and to $\Delta \Gamma_D$

Long-Distance Contribution to D⁰ – D⁰ Mixing

- Contribution to $D^0 \overline{D}^0$ from exclusive channels, like $D^0 \rightarrow \pi \pi$, K π , K K, etc. $\rightarrow \overline{D}^0$ A. F. Falk et al., Phys. Rev. D 69, 114021 (2004), A.F. Falk et al., Phys. Rev. D 65, 054034 (2002): x_{D} , $y_{D} \sim \sin^2\theta_{C}$ (flavor SU(3) breaking)² ~ 1%
- Contribution to D⁰ D⁰ from higher order terms in 1/m_c
 OPE (the inclusive approach)

- In particular from the terms corresponding to the diagrams containing low-energy intermediate down-type quark states (quark-antiquark condensates) or the diagrams with "hanging" quarks

Diagrams with "Hanging Quarks"

Yields matrix elements of d=9 operators $- 1/m_c^3$ terms in OPE

Yields matrix elements of d=12 operators – $1/m_c^6$ terms in OPE

Propagators vs. Hanging Quark Lines

H. Georgi, Phys. Lett.B297, 353 (1992):

- The U-spin symmetric structure of $\Delta C = 1$ weak effective Hamiltonian enforces the $D^0 - D^0$ oscillation amplitude to vanish if any of the intermediate light quark states is assumed to be massless.
- Mass insertion in each propagator produces a factor $m_s^2 m_d^2 \approx m_s^2$
- Mass insertion in each non-perturbative itermediate light quark-antiquark state produces a factor m_s – m_d ≈ m_s
- Expect softer flavor SU(3) suppression (or softer GIM cancellations) in diagrams with hanging quarks!

"The Rule of Thumb"

I.Bigi, N. Uraltsev, Nucl. Phys. B592, 92 (2001):

- Cutting a quark line, we pay the price of a power suppression $\[\sim \mu_{had}\]^3/m_c\]^3$. Yet GIM (or flavor SU(3)) suppression (in this fermion line) is m_s/μ_{had} and there is no loop factor. Altogether we have the enhancement $\[\sim 4 \ \pi^2 \ \mu_{had}\]^2/(m_s \ m_c)\]^2 \[170] \Rightarrow (x_D)^{d=9}\]^2 \[10^{-4}]$
- Cutting two quark lines... do the same math, but instead of the second loop factor 4 π^2 we have 4 $\pi \alpha_s$ – one must add a gluon to transfer a large momentum. Altogether, the enhancement compared to the LO

~ 4 π^2 4 $\pi \alpha_s \mu_{had}^{4} / (m_s^2 m_c^2) ~ 3500 \implies (x_D)^{d=12} ~ \text{~few} \times 10^{-3}$

 May also work for y_D but with caution: we are back to loop level ("dress" the diagrams by gluons) – y_D ≠ 0 if only diagrams have an absorptive part.

More about y_D - Bobrowski, Lenz (multiple talks)

The Purpose of Our Work

To verify quantitatively the estimates of Bigi and Uraltsev (and other authors) for the (normalized) mass difference in $D^0 - \overline{D^0}$ mixing, $x_D = \Delta M_D / \Gamma_D$

Motivation: Calculation of the matrix elements may contain some surprises, like suppressing 1/N_c factors, etc.

Our Strategy

Low-energy effective Hamiltonian:

$$H_W^{\Delta C=1} = \frac{4G_F}{\sqrt{2}} \sum_{q_1,q_2=s,d} V_{uq_1} V_{cq_2}^* \left[C_1(m_c) \overline{u} \gamma^{\mu} P_L c \overline{q}_2 \gamma_{\mu} P_L q_1 + C_2(m_c) \overline{u} \gamma^{\mu} P_L q_1 \overline{q}_2 \gamma_{\mu} P_L c \right]$$

SM-two consecutive |**ΔC**|=1 transitions:

$$\begin{aligned} x_D &= -\frac{1}{2M_D} \Big\langle \overline{D}^0 \Big| i \int d^4 x \, H_W^{\Delta C=1}(x) H_W^{\Delta C=1}(0) \Big| D^0 \Big\rangle \\ &= \frac{C^{(3)}}{m_c^3} \Big\langle \overline{D}^0 \Big| \, \overline{u} \, \Gamma_1 \, c \, \overline{u} \, \Gamma_2 \, c \, \left(\overline{s} \, \Gamma_3 \, s - \overline{d} \, \Gamma_3 \, d \right) \Big| D^0 \Big\rangle + \\ &+ \frac{C^{(6)}}{m_c^6} \Big\langle \overline{D}^0 \Big| \, \overline{u} \, \Gamma_1 \, c \, \overline{u} \, \Gamma_2 \, c \, \left(\overline{s} \, \Gamma_3 \, s \, \overline{s} \, \Gamma_4 \, s + \dots \right) \Big| D^0 \Big\rangle + \dots \end{aligned}$$

Factorization Approach

• E.g. for d =12 operator matrix elements (dominant diagrams with 4 hanging quarks)

$$iggle \overline{D}{}^{0}igg| \, \overline{u} \, \Gamma_{\!_1} \, c \, \overline{u} \, \Gamma_{\!_2} \, c \, iggl(\overline{s} \, \Gamma_{\!_3} \, s \, \overline{s} \, \Gamma_{\!_4} \, s + iggr) iggr| D^0 iggr
angle = \ = iggl\langle \overline{D}{}^0iggr| \, \overline{u} \, \Gamma_{\!_1} \, c \, \overline{u} \, \Gamma_{\!_2} \, c \, iggr| D^0 iggr
angle iggl(0 iggr| iggl(\overline{s} \, \Gamma_{\!_3} \, s \, \overline{s} \, \Gamma_{\!_4} \, s + iggr) iggr| \, 0 iggr
angle$$

Some problems with this approach for d = 9 operator matrix elements

 must include also d = 10 operators (Bobrowski, Lenz) or perhaps
 neglect diagrams with 2 hanging quarks as subdominant ones.

Dominant Diagrams

In progress, showing the result for one diagram just for illustration.

$$(x_D)_{cc}^{d=12} = \frac{1}{9} \frac{4G_F^2 m_c^2}{3} (4\pi\alpha_s) \frac{f_D^2 M_D}{\Gamma_D} \left(\frac{M_D^2}{m_c^2}\right) \left(\frac{m_s^2}{m_c^2}\right) \left(\frac{\Lambda^4}{m_c^4}\right) \times \sin^2 \theta_c \cos^2 \theta_c \left[C_2^2 + 4C_1 C_2 + 6C_1^2\right]$$

where

$$m_{s}^{2}\Lambda^{4} = \left\langle 0 \left| \left(\bar{s} \gamma^{\mu} P_{L} s - \bar{d} \gamma^{\mu} P_{L} d \right) \left(\bar{s} \gamma_{\mu} P_{L} s - \bar{d} \gamma_{\mu} P_{L} d \right) - 2 \bar{s} \gamma^{\mu} P_{L} d \bar{d} \gamma_{\mu} P_{L} s \right| 0 \right\rangle$$

Compare

$$(x_D)_{cc}^{d=12} = \frac{1}{9} \frac{4G_F^2 m_c^2}{3} (4\pi\alpha_s) \frac{f_D^2 M_D}{\Gamma_D} \left(\frac{M_D^2}{m_c^2}\right) \left(\frac{m_s^2}{m_c^2}\right) \left(\frac{\Lambda^4}{m_c^4}\right) \times \sin^2\theta_c \cos^2\theta_c \left[C_2^2 + 4C_1C_2 + 6C_1^2\right]$$

to

$$x_{D}^{LO} \equiv \frac{\Delta M_{D}^{LO}}{\Gamma_{D}} = \frac{G_{F}^{2} m_{c}^{2}}{3\pi^{2}} \frac{f_{D}^{2} M_{D}}{\Gamma_{D}} \left(\frac{m_{s}^{4}}{m_{c}^{4}}\right) \sin^{2} \theta_{C} \cos^{2} \theta_{C} \left[\frac{5}{4} \left(C_{2}^{2} - 2C_{1}C_{2}^{2} - 3C_{1}^{2}\right) \overline{B}_{D}^{(S)} - C_{2}^{2} B_{D}\right]$$

Enhancements:

Factor 4 $\pi \alpha_s(m_c) \approx 4.8$

Suppressing factors: $\frac{\Lambda^4}{m_c^4} \sim 0.1$, if $\Lambda \sim 1 \,\text{GeV}$ $1/N_c^2 = 1/9$

 $\begin{bmatrix} C_2^2 + 4C_1C_2 + 6C_1^2 \end{bmatrix} = 0.48,$ $C_2^2 = 1.44, \ 4C_1C_2 = -1.92$

Numerical Result

 $(x_D)_{cc}^{d=12} = 0.33 \times 10^{-3}$ - less than previous estimates

Other diagrams may yield $(1 - 1.5) \times 10^{-3}$, if there is no cancellation in the sum of the Wilson coefficient products. However, it is still well below $x_D^{exp} = (6.5 \pm 1.9) \times 10^{-3}$

• Failure of OPE?

• Factorization is inappropriate at 1/m⁶ order?

• Or simply $x_D^{exp} = (6.5 \pm 1.9) \times 10^{-3}$ is due to New Physics contribution?

No answer on these questions yet.

Conclusions and Summary

- We are examining the dominant $1/m_c$ contribution to the mass difference in $D^0 \overline{D}^0$ mixing.
- Our goal is to verify quantitatively the estimates made for this contribution.
- The preliminary results show that the actual result seems to be slightly below the estimates and well below the experimental value of ΔM_D .
- The calculations are still in progress.