# Dominant $1 / m_{c}$ Contribution to $\Delta M_{D}$ in $D^{0}-\bar{D}^{0}$ Mixing 

## Gagik Yeghiyan

Grand Valley State University, Allendale, MI
In collaboration with
E. Golowich and A.A. Petrov

Charm 2012, Honolulu, Hawaii

A work in progress
(preliminary results)

## $D^{0}-D^{0}$ within the $S M$

To the lowest order in perturbation theory:


One usually neglects the loops with b-quarks as
$\left|\mathrm{V}_{\mathrm{cb}}{ }^{*} \mathrm{~V}_{\mathrm{ub}}\right| \ll\left|\mathrm{V}_{\mathrm{cs}}{ }^{*} \mathrm{~V}_{\mathrm{us}}\right| \approx\left|\mathrm{V}_{\mathrm{cd}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}\right|$
Within the SM $D^{0}-\bar{D}^{0}$ mixing occurs by means of two consecutive (effective) $|\Delta C|=1$ transitions.
$\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}: \quad$ Quantum Mechanical Description

$$
i \frac{\partial}{\partial t}\binom{D^{0}(t)}{\bar{D}^{0}(t)}=\left(M-\frac{i}{2} \Gamma\right)\binom{D^{0}(t)}{\bar{D}^{0}(t)} \quad \begin{aligned}
& M_{11}=M_{22} \text { and } \Gamma_{11}=\Gamma_{22} \\
& M_{12}=M_{21}^{\star} \text { and } \Gamma_{12}=\Gamma_{21}^{*} .
\end{aligned}
$$

Non-diagonal elements control the mixing:
SM
$M_{12}-\frac{i}{2} \Gamma_{12}=\frac{1}{2 M_{D}}\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=2}\left|D^{0}\right\rangle+\frac{1}{2 M_{D}} \sum_{n} \frac{\left\langle\bar{D}^{0}\right| H_{W}^{\Delta C=1}|n\rangle\langle n| H_{W}^{\Delta C=1}\left|D^{0}\right\rangle}{M_{D}-E_{n}+i \epsilon}$
In the limit of CP-conservation:

$$
\begin{aligned}
& \Delta M \equiv M_{+}-M_{-}=2 M_{12} \\
& \Delta \Gamma \equiv \Gamma_{+}-\Gamma_{-}=2 \Gamma_{12}
\end{aligned}
$$

$$
D_{ \pm}=\frac{1}{\sqrt{2}}\left(D^{0} \pm \bar{D}^{0}\right)
$$

## $D^{0}-D^{0}$ Within the SM to the LO in Perturbation Theory


$\Delta M_{D}$ and $\Delta \Gamma_{D}$ vanish in the limit of exact $S U(3)$ flavor symmetry. In the real world flavor $\mathrm{SU}(3)$ is broken, so $\Delta \mathrm{M}_{\mathrm{D}} \neq 0$ and $\Delta \Gamma_{\mathrm{D}} \neq 0$ however they are suppressed in-powers of $m_{s} / m_{c}$

$$
\begin{aligned}
& \left.x_{D}^{L O} \equiv \frac{\Delta M_{D}^{L O}}{\Gamma_{D}}=\frac{G_{F}^{2} m_{c}^{2}}{3 \pi^{2}} \frac{f_{D}^{2} M_{D}}{\Gamma_{D}}\left(\frac{m_{s}^{4}}{m_{c}^{4}}\right)\right) \sin ^{2} \theta_{C} \cos ^{2} \theta_{C}\left[\frac { 5 } { 4 } \left(C_{2}^{2}-\right.\right. \\
& \left.\left.-2 C_{1} C_{2}-3 C_{1}^{2}\right) \bar{B}_{D}^{(S)}-C_{2}^{2} B_{D}\right] \approx 1.7 \times 10^{-6} \\
& \text { HFAG } \\
& X_{D}{ }^{\exp }=(0.65 \pm 0.19) \%
\end{aligned}
$$

The existing experimental data

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{D}} \equiv \Delta \mathrm{M}_{\mathrm{D}} / \Gamma_{\mathrm{D}}=(0.65 \pm 0.19) \% \\
& \mathrm{y}_{\mathrm{D}} \equiv \Delta \Gamma_{\mathrm{D}} /\left(2 \Gamma_{\mathrm{D}}\right)=(0.74 \pm 0.12) \%
\end{aligned}
$$

may be explained by

- (Short-distance) New Physics contribution to $\Delta \mathrm{M}_{\mathrm{D}}$ and (in certain SM extensions only) to $\Delta \Gamma_{D}$
- Long - distance SM contribution to $\Delta M_{D}$ and to $\Delta \Gamma$


## Long-Distance Contribution to $D^{0}-\overline{D^{0}}$ Mixing

- Contribution to $\mathrm{D}^{0}-\overline{\mathbf{D}^{0}}$ from exclusive channels, like

$$
\mathrm{D}^{0} \rightarrow \pi \pi, \mathrm{~K} \pi, \mathrm{~K} \mathrm{~K}, \text { etc. } \rightarrow \overline{\mathrm{D}}^{0}
$$

A. F. Falk et al., Phys. Rev. D 69, 114021 (2004),
A.F. Falk et al., Phys. Rev. D 65, 054034 (2002):
$\mathrm{x}_{\mathrm{D},} \mathrm{Y}_{\mathrm{D}} \sim \sin ^{2} \theta_{\mathrm{C}}$ (flavor SU(3) breaking) ${ }^{2} \sim 1 \%$

- Contribution to $D^{0}-\overline{D^{0}}$ from higher order terms in $1 / m_{c}$ OPE (the inclusive approach)
- In particular from the terms corresponding to the diagrams containing low-energy intermediate down-type quark states (quark-antiquark condensates) or the diagrams with "hanging" quarks

Diagrams with "Hanging Quarks"


Yields matrix elements of $d=9$ operators $-1 / m_{c}{ }^{3}$ terms in OPE


Yields matrix elements of $d=12$ operators $-1 / m_{c}{ }^{6}$ terms in OPE

## Propagators vs. Hanging Quark Lines

H. Georgi, Phys. Lett.B297, 353 (1992):

- The U-spin symmetric structure of $\Delta C=1$ weak effective Hamiltonian enforces the $D^{0}-D^{0}$ oscillation amplitude to vanish if any of the intermediate light quark states is assumed to be massless.
- Mass insertion in each propagator produces a factor $\mathrm{m}_{\mathrm{s}}{ }^{2}-\mathrm{m}_{\mathrm{d}}{ }^{2} \approx \mathrm{~m}_{\mathrm{s}}{ }^{2}$
- Mass insertion in each non-perturbative itermediate light quark-antiquark state produces a factor $m_{s}-m_{d} \approx m_{s}$
- Expect softer flavor SU(3) suppression (or softer GIM cancellations) in diagrams with hanging quarks!


## "The Rule of Thumb"

I.Bigi, N. Uraltsev, Nucl. Phys. B592, 92 (2001):

- Cutting a quark line, we pay the price of a power suppression ${ }^{\sim} \mu_{\text {had }}{ }^{3} / m_{c}{ }^{3}$. Yet GIM (or flavor SU(3)) suppression (in this fermion line) is $\mathrm{m}_{\mathrm{s}} / \mu_{\text {had }}$ and there is no loop factor. Altogether we have the enhancement

$$
\sim 4 \pi^{2} \mu_{\text {had }}{ }^{2} /\left(m_{s} m_{c}\right)^{\sim} 170 \Rightarrow\left(x_{D}\right)^{d=9} \sim 10^{-4}
$$

- Cutting two quark lines... do the same math, but instead of the second loop factor $4 \pi^{2}$ we have $4 \pi \alpha_{s}$ - one must add a gluon to transfer a large momentum. Altogether, the enhancement compared to the LO

$$
\sim 4 \pi^{2} 4 \pi \alpha_{s} \mu_{\text {had }}{ }^{4} /\left(m_{s}^{2} m_{c}^{2}\right) \sim 3500 \Rightarrow\left(x_{D}\right)^{d=12} \sim \text { few } \times 10^{-3}
$$

- May also work for $y_{D}$ but with caution: we are back to loop level ("dress" the diagrams by gluons) - $y_{D} \neq 0$ if only diagrams have an absorptive part.
More about $y_{D}$ - Bobrowski, Lenz (multiple talks)


## The Purpose of Our Work

To verify quantitatively the estimates of Bigi and Uraltsev (and other authors) for the (normalized) mass difference in $D^{0}-\overline{D^{0}}$ mixing, $x_{D}=\Delta M_{D} / \Gamma_{D}$

Motivation: Calculation of the matrix elements may contain some surprises, like suppressing $1 / \mathbf{N}_{\mathrm{c}}$ factors, etc.

## Our Strategy

Low-energy effective Hamiltonian:

$$
\begin{aligned}
H_{W}^{\Delta C=1}=\frac{4 G_{F}}{\sqrt{2}} \sum_{q_{1}, q_{2}=s, d} V_{u q_{1}} V_{c q_{2}}^{*} & {\left[C_{1}\left(m_{c}\right) \bar{u} \gamma^{\mu} P_{L} c \bar{q}_{2} \gamma_{\mu} P_{L} q_{1}\right.} \\
& \left.+C_{2}\left(m_{c}\right) \bar{u} \gamma^{\mu} P_{L} q_{1} \bar{q}_{2} \gamma_{\mu} P_{L} c\right]
\end{aligned}
$$

SM-two consecutive $|\Delta C|=1$ transitions:

$$
\begin{aligned}
x_{D} & =-\frac{1}{2 M_{D}}\left\langle\bar{D}^{0}\right| i \int d^{4} x H_{W}^{\Delta C=1}(x) H_{W}^{\Delta C=1}(0)\left|D^{0}\right\rangle \\
& =\frac{C^{(3)}}{m_{c}^{3}}\left\langle\bar{D}^{0}\right| \bar{u} \Gamma_{1} c \bar{u} \Gamma_{2} c\left(\bar{s} \Gamma_{3} s-\bar{d} \Gamma_{3} d\right)\left|D^{0}\right\rangle+ \\
& +\frac{C^{(6)}}{m_{c}^{6}}\left\langle\bar{D}^{0}\right| \bar{u} \Gamma_{1} c \bar{u} \Gamma_{2} c\left(\bar{s} \Gamma_{3} s \bar{s} \Gamma_{4} s+\ldots\right)\left|D^{0}\right\rangle+\ldots .
\end{aligned}
$$

## Factorization Approach

- E.g. for $\mathbf{d = 1 2}$ operator matrix elements (dominant diagrams with 4 hanging quarks)

$$
\begin{aligned}
& \left\langle\bar{D}^{0}\right| \bar{u} \Gamma_{1} c \bar{u} \Gamma_{2} c\left(\bar{s} \Gamma_{3} s \bar{s} \Gamma_{4} s+\ldots\right)\left|D^{0}\right\rangle= \\
& =\left\langle\bar{D}^{0}\right| \bar{u} \Gamma_{1} c \bar{u} \Gamma_{2} c\left|D^{0}\right\rangle\langle 0|\left(\bar{s} \Gamma_{3} s \bar{s} \Gamma_{4} s+\ldots .\right)|0\rangle
\end{aligned}
$$

- Some problems with this approach for $\mathrm{d}=9$ operator matrix elements - must include also d=10 operators (Bobrowski, Lenz) or perhaps neglect diagrams with 2 hanging quarks as subdominant ones.


## Dominant Diagrams



In progress, showing the result for one diagram just for illustration.

$$
\begin{aligned}
\left(x_{D}\right)_{c c}^{d=12}=\frac{1}{9} \frac{4 G_{F}^{2} m_{c}^{2}}{3} & \left(4 \pi \alpha_{s}\right) \frac{f_{D}^{2} M_{D}}{\Gamma_{D}}\left(\frac{M_{D}^{2}}{m_{c}^{2}}\right)\left(\frac{m_{s}^{2}}{m_{c}^{2}}\right)\left(\frac{\Lambda^{4}}{m_{c}^{4}}\right) \times \\
& \times \sin ^{2} \theta_{c} \cos ^{2} \theta_{c}\left[C_{2}^{2}+4 C_{1} C_{2}+6 C_{1}^{2}\right]
\end{aligned}
$$

where

$$
m_{s}^{2} \Lambda^{4}=\langle 0|\left(\bar{s} \gamma^{\mu} P_{L} s-\bar{d} \gamma^{\mu} P_{L} d\right)\left(\bar{s} \gamma_{\mu} P_{L} s-\bar{d} \gamma_{\mu} P_{L} d\right)-2 \bar{s} \gamma^{\mu} P_{L} d \bar{d} \gamma_{\mu} P_{L} s|0\rangle
$$

## Compare

$$
\begin{aligned}
&\left(x_{D}\right)_{c c}^{d=12}=\frac{1}{9} \frac{4 G_{F}^{2} m_{c}^{2}}{3}\left(4 \pi \alpha_{s}\right) \frac{f_{D}^{2} M_{D}}{\Gamma_{D}}\left(\frac{M_{D}^{2}}{m_{c}^{2}}\right)\left(\frac{m_{s}^{2}}{m_{c}^{2}}\right)\left(\frac{\Lambda^{4}}{m_{c}^{4}}\right) \times \\
& \times \sin ^{2} \theta_{c} \cos ^{2} \theta_{c}\left[C_{2}^{2}+4 C_{1} C_{2}+6 C_{1}^{2}\right]
\end{aligned}
$$

to
$x_{D}^{L O} \equiv \frac{\Delta M_{D}^{L O}}{\Gamma_{D}}=\frac{G_{F}^{2} m_{c}^{2}}{3 \pi^{2}} \frac{f_{D}^{2} M_{D}}{\Gamma_{D}}\left(\frac{m_{s}^{4}}{m_{c}^{4}}\right) \sin ^{2} \theta_{C} \cos ^{2} \theta_{C}\left[\frac{5}{4}\left(C_{2}^{2}-\right.\right.$
$\left.\left.-2 C_{1} C_{2}-3 C_{1}^{2}\right) \bar{B}_{D}^{(S)}-C_{2}^{2} B_{D}\right]$

Enhancements:

$$
\frac{m_{s}^{4}}{m_{c}^{4}} \rightarrow \frac{m_{s}^{2}}{m_{c}^{2}} \quad \frac{1}{3 \pi^{2}} \rightarrow \frac{4}{3}
$$

Factor $4 \pi \alpha_{s}\left(m_{c}\right) \approx 4.8$

Suppressing factors:

$$
\frac{\Lambda^{4}}{m_{c}^{4}} \sim 0.1, \text { if } \Lambda \sim 1 \mathrm{GeV}
$$

$$
1 / N_{c}^{2}=1 / 9
$$

$$
\left[C_{2}^{2}+4 C_{1} C_{2}+6 C_{1}^{2}\right]=0.48,
$$

$$
\begin{equation*}
\mathrm{C}_{2}^{2}=1.44,4 C_{1} C_{2}=-1.92 \tag{14}
\end{equation*}
$$

## Numerical Result

$$
\left(x_{D}\right)_{c c}^{d=12}=0.33 \times 10^{-3} \quad \text { - less than previous estimates }
$$

Other diagrams may yield $(1-1.5) \times 10^{-3}$, if there is no cancellation in the sum of the Wilson coefficient products. However, it is still well below $x_{D}{ }^{\text {exp }}=(6.5 \pm 1.9) \times 10^{-3}$

- Failure of OPE?
- Factorization is inappropriate at $1 / \mathrm{m}_{\mathrm{c}}{ }^{6}$ order?
- Or simply $\mathrm{x}_{\mathrm{D}}{ }^{\text {exp }}=(6.5 \pm 1.9) \times 10^{-3}$ is due to New Physics contribution?
- No answer on these questions yet.


## Conclusions and Summary

- We are examining the dominant $1 / m_{c}$ contribution to the mass difference in $\mathrm{D}^{0}-\overline{\mathrm{D}}^{0}$ mixing.
- Our goal is to verify quantitatively the estimates made for this contribution.
- The preliminary results show that the actual result seems to be slightly below the estimates and well below the experimental value of $\Delta M_{D}$.
- The calculations are still in progress.

