Search for CP Violation in charm decays

$$
\begin{gathered}
D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \\
D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \\
D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}
\end{gathered}
$$

Riccardo Cenci

University of Maryland On behalf of the BaBar Collaboration

Charm 2012, $5^{\text {th }}$ International Workshop on Charm Physics May 14-17 ${ }^{\text {th }}, 2012$, Honolulu, Hawai'i

CP violation in the SM

- CP violation in the SM results from KM complex phases in the CKM quark mixing matrix:

$$
\left[\begin{array}{l}
\left|d^{\prime}\right\rangle \\
\left|s^{\prime}\right\rangle \\
\left|b^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]\left[\begin{array}{l}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{array}\right]
$$

- Using the Wolfenstein parametrization:

$$
\left[\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}\left(\rho-i \eta+\frac{i^{2}}{2} \eta \lambda^{2}\right) \\
-\lambda & 1-\frac{\lambda^{2}}{2}-i \eta A^{2} \lambda^{4} & A \lambda^{2}\left(1+i \eta \lambda^{2}\right) \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right]
$$

- Charmed mesons: CP violation is CKM suppressed $\mathcal{O}\left(10^{-3}\right)$
- Observing deviations from these small effects would be a sign of New Physics

Cabibbo-allowed decay modes

- Type of transitions:
- Cabibbo Favored (CF) $c \rightarrow s \bar{d} u$
- Singly-Cabibbo-Suppressed (SCS) $c \rightarrow s \bar{s} u, c \rightarrow d \bar{d} u$
- Doubly-Cabibbo-Suppressed (DCS) $c \rightarrow d \bar{s} u$
- $D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$decay can proceed through CF and DCS transitions, but CF dominates: one phase and CPV from SM is negligible

$q, q^{\prime}=s, d$

$C P V \simeq 0$

Cabibbo-suppressed decay modes

- No CF transition for some decays, so amplitude for tree and penguin diagrams are comparable (penguins can proceed only through SCS transitions)
- Penguins carry a weak phase relative to the tree amplitude, so there is a relevant tree-penguin interference

$$
D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}
$$

Cabibbo-suppressed decay modes

- No CF transition for some decays, so amplitude for tree and penguin diagrams are comparable (penguins can proceed only through SCS transitions)
- Penguins carry a weak phase relative to the tree amplitude, so there is a relevant tree-penguin interference

$$
D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}
$$

$\xrightarrow{\sim}$

$C P V \sim 0.1 \%$

CP asymmetry measurement

- Time integrated CP asymmetry
$A_{C P}=\frac{\mathcal{B}\left(D_{(s)}^{+} \rightarrow K_{S}^{0}\left(\pi^{+}, K^{+}\right)\right)-\mathcal{B}\left(D_{(s)}^{-} \rightarrow K_{S}^{0}\left(\pi^{-}, K^{-}\right)\right)}{\mathcal{B}\left(D_{(s)}^{+} \rightarrow K_{S}^{0}\left(\pi^{+}, K^{+}\right)\right)+\mathcal{B}\left(D_{(s)}^{-} \rightarrow K_{S}^{0}\left(\pi^{-}, K^{-}\right)\right)}$
- Many systematics cancel out, sensitivity down to $\sim 0.2 \%$
- Charged mesons, only direct CPV
- Contribution from $K^{0}-\bar{K}^{0}$ mixing [PDG 2010]: +(-)0.332 $\pm \mathbf{0 . 0 0 6 \%}$ when a K^{0} (\bar{K}^{0}) is in the final state
- Any deviation would be evidence of CP violation in the charm system
- Already published by BaBar: $D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}{ }_{\text {[Phys. Rev. D 83, 071103(R) (2011)] }}$ $\mathrm{A}_{\mathrm{CP}}=(-0.11 \pm 0.13($ stat $) \pm 0.10$ (syst) $) \%$ (after removing $K^{0}-\bar{K}^{0}$ mixing contrib.)

Reconstructed asymmetry

- Measured asymmetry is the sum of three contributions:

$$
A_{\mathrm{rec}}^{D_{(s)}}=A_{C P}^{D_{(s)}}+A_{F B}^{D_{(s)}}\left(\cos \theta_{D_{(s)}}^{*}\right)+A_{\varepsilon}^{(\pi, K)}\left(p_{(\pi, K)}^{\mathrm{lab}}, \cos \theta_{(\pi, K)}^{\mathrm{lab}}\right)
$$

- CP asymmetry, ACP
- Fwd/Bwd asymmetry in $c \bar{c}$ production, A_{FB}
- virtual photon interference with virtual Z^{0}
- Detector-induced charge reconstruction asymmetry, A_{ε}
- reconstruction asymmetries and material interactions
- affecting only the track not coming from the K_{S}
- Corrections will be applied to remove A_{ε}, while $A_{C P}$ and A_{FB} are measured

Charge asymmetry in reconstruction

- Data-driven method to remove detector-induced asymmetry A_{ε}
- 100M generic tracks with no asymmetry from physics: $\mathrm{Y}(4 \mathrm{~S})$ events, after continuum subtraction

$$
N_{\text {rec }}(\vec{p})=N_{\text {recOnPeak }}(\vec{p})-N_{\text {recoffeak }}(\vec{p}) \cdot \frac{\mathcal{L}_{\text {OnPeak }}}{\mathcal{L}_{\text {OffPeak }}}
$$

- Step 1: criteria to strongly reduce the asymmetry:
- veto on tracks identified as proton and electron
- Pion: veto on tracks identified as kaon
- Kaon: tracks should be identified as kaon but not as pion
- рт $>0.4 \mathrm{GeV} / \mathrm{c}$
- Residual asymmetry: pions $-0.25 \pm 0.03 \%$, kaons $0.23 \pm 0.05 \%$ (compatible with Y(4S) MC)
- Step 2: corrections to remove the residual asymmetry

Charge asymmetry correction

$$
R=\frac{\epsilon^{+}(\vec{p})}{\epsilon^{-}(\vec{p})}=\frac{N_{\mathrm{rec}}^{+}(\vec{p})}{N_{\mathrm{rec}}^{-}(\vec{p})}
$$

- Equally populated bins of momentum magnitude and cosine of polar angle
- Small correction ($\sim 1-2 \%$) applied to negative $\mathrm{D}_{(\mathrm{s})}$ candidates
- Systematic contribution will be included later

Invariant Mass Distributions

- $\mathrm{D}(\mathrm{s})$ candidates fully reconstructed plus standard selection
- Relevant cut, CMS momentum:
- $\mathrm{p}^{*}>2.0 \mathrm{GeV} / \mathrm{c}$ for D mode
- $\mathrm{p}^{*}>2.6 \mathrm{GeV} / \mathrm{c}$ for D_{s} modes
- Clear signal peak

Data

Generic MC

PDF components

- Fit to invariant mass distributions using three components:
- Signal: 2 or 1 Gaussian functions
- Charm background from other charm modes (see table) with similar invariant mass or mis-id pion/kaon: 1D not parametric PDF from MC
- Combinatorial background: 2nd or 1 st order polynomial

$$
D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}
$$

	$D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$	$D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$	$D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$
Signal PDF	2 Gauss	2 Gauss	1 Gauss
Charm Bkg PDF	$D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$	$D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$	$D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$
Combinatorial PDF	$2^{\text {nd }}$ order poly	$2^{\text {nd }}$ order poly	$1^{\text {st }}$ order poly

Simultaneous fit

$$
D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \quad D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \quad D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}
$$

Signal Yield 159400 ± 800

Signal Yield 288200 ± 1100

Signal Yield 14330 ± 310

- Simultaneous binned extended maximum likelihood fit to 20 sub-samples: positive and negative candidates, 10 bins of $\cos \theta_{D_{(s)}}^{*}$
- 70, 80, and 64 free parameters for $D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$, $D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$, and $D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$, respectively
- 10 asymmetry values are extracted for each mode

$A_{C P}, A_{F B}$ extraction

$A_{F B}\left(\left|\cos \theta_{D}^{*}\right|\right)=\frac{A\left(+\left|\cos \theta_{D}^{*}\right|\right)-A\left(-\left|\cos \theta_{D}^{*}\right|\right)}{2} \quad A_{C P}\left(\left|\cos \theta_{D}^{*}\right|\right)=\frac{A\left(+\left|\cos \theta_{D}^{*}\right|\right)+A\left(-\left|\cos \theta_{D}^{*}\right|\right)}{2}$

 $D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$
$D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$
$D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$

$A_{C P} 0.155 \pm 0.36 \%$

$A_{\text {CP }} \mathbf{0 . 0 0} \pm 0.23 \%$

$A_{C P} \mathbf{0 . 6} \pm 2.0 \%$

Systematics

- Dominant contributions:
- correction of detector-induced asymmetry
- choice of binning (only for $D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$)

Syst. uncertainty (absolute)	$D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$	$D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$	$D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$
Efficiency of PID selectors	0.05%		0.05%
Statistics of control sample	0.23%		0.06%
Selection of control sample	0.01%		0.01%
$\cos \Theta^{*}$ binning	0.04%	0.02%	0.27%
$K^{0}-\bar{K}^{0}$ regeneration [1]	0.05%	0.05%	0.06%
$K_{S}^{0}-K_{L}^{0}$ interference [2]	0.015%	0.014%	0.008%
Total	0.25%	0.24%	0.29%

[1] arxiv:1006.1938
[2] arXiv:1110.3790v1

Final values

- Corrections to the final values for biases and interference effect

	$D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$	$D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm}$	$D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$
$A_{C P}$ value from the fit	$(+0.16 \pm 0.36) \%$	$(0.00 \pm 0.23) \%$	$(+0.6 \pm 2.0) \%$
Correction for the bias from toy MC experiments	$+0.013 \%$	-0.01%	-
Correction for the bias in the PID selectors	-0.05%	-0.05%	-0.05%
Correction for the $K_{S}^{0}-K_{L}^{0}$ interference $\left(\Delta A_{C P}\right)$	$+0.015 \%$	$+0.014 \%$	-0.008%
$A_{C P}$ final value	$(+0.13 \pm 0.36 \pm 0.25) \%$	$(-0.05 \pm 0.23 \pm 0.24) \%$	$(+0.6 \pm 2.0 \pm 0.3) \%$
$A_{C P}$ contribution	$(-0.332 \pm 0.006) \%$	$(-0.332 \pm 0.006) \%$	$(+0.332 \pm 0.006) \%$
from $K^{0}-\bar{K}^{0}$ mixing			
$A_{C P}$ final value (charm only $)$	$(+0.46 \pm 0.36 \pm 0.25) \%$	$(+0.28 \pm 0.23 \pm 0.24) \%$	$(+0.3 \pm 2.0 \pm 0.3) \%$

- No sign of physics beyond the SM

Conclusions

- We measure the time-integrated CP asymmetry in the following modes:

$$
D^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \quad D_{s}^{ \pm} \rightarrow K_{S}^{0} K^{ \pm} \quad D_{s}^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}
$$

- Systematic error down to 0.2% by using a data-driven method to remove asymmetry induced by detector effects
- Final values are compatible with SM predictions within one standard deviation

	$\operatorname{BABAR}\left(469 \mathrm{fb}^{-1}\right)$	Belle $\left(673 \mathrm{fb}^{-1}\right){ }^{[1]}$
$D^{+} \rightarrow K_{S}^{0} K^{+}$	$(+0.13 \pm 0.36 \pm 0.25) \%$	$(-0.16 \pm 0.58 \pm 0.25) \%$
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	$(-0.05 \pm 0.23 \pm 0.25) \%$	$(+0.12 \pm 0.36 \pm 0.22) \%$
$D_{s}^{+} \rightarrow K_{S}^{0} \pi^{+}$	$(+0.6 \pm 2.0 \pm 0.3) \%$	$(5.45 \pm 2.50 \pm 0.33) \%$

[1] Phys. Rev. Lett. 104, 181602 (2010)

CP asymmetry extraction

- After removing the charge asymmetry induced by detector effect, the measured asymmetry can be written as:

$$
A=\frac{N_{D^{+}}-N_{D^{-}}}{N_{D^{+}}+N_{D^{-}}}=\frac{A_{F B}+A_{C P}}{1+A_{F B} A_{C P}} \approx A_{F B}+A_{C P}
$$

- A_{FB} asymmetry is an odd function of the D polar angle Θ in CMS (only first order term below):

$$
A_{F B}(\cos \Theta)=\frac{8}{3} a_{F B} \frac{\cos \Theta}{1+\cos ^{2} \Theta}
$$

$$
\begin{aligned}
& A_{F B}=\frac{A^{\cos \theta>0}+A^{\cos \theta<0}}{2} \\
& A_{C P}=\frac{A^{\cos \theta>0}-A^{\cos \theta<0}}{2}
\end{aligned}
$$

- Each pairs of symmetric $\cos \Theta$ bins produces one asymmetry value
- Values are combined using a χ^{2} minimization

Cut-based analysis selection

- D(s) candidates fully reconstructed
- Selection during processing
- D(s) candidate
- Chi^{2} probabilities for the kinematic fit more than 0.1%
- Ks candidate
- Decay length significance, greater than 3
- Chi^{2} probabilities for the kinematic fit more than 0.1%
- Selection cuts:
- $\mathrm{D}_{(\mathrm{s})}$ candidate
- Invariant mass, within $65 \mathrm{MeV} / \mathrm{c}^{2}$ from nominal mass
- CMS momentum, $\mathrm{p}^{*}>2$ for D mode, $\mathrm{p}^{*}>2.6$ for D_{s}, for both $\mathrm{p}^{*}<5 \mathrm{GeV} / \mathrm{c}$,
- Transverse distance, $\left|d_{0}\right|<0.3 \mathrm{~cm}$
- Lifetime using decay distance in the transverse plane, $-15<\tau<35 \mathrm{ps}$
- Ks candidate
- Invariant mass, within $10 \mathrm{MeV} / \mathrm{c}^{2}$ from nominal mass
- For data/MC agreement, truth matched charm decays are rescaled to account for not exact branching fractions in the simulation

Multivariate Selection

- Multivariate analysis using a Boosted Decision Tree (BDT)/ Likelihood method trained on MC events
- 7 kinematic variables:
- $\mathrm{D}_{(\mathrm{s})}$: lifetime, CMS mom and decay distance in transverse plane
- K K_{S} and pion: momentum and transverse momentum
- Criterion optimized using significance: $\mathrm{S} / \sqrt{ }(\mathrm{S}+\mathrm{B})$

TMVA overtraining check for classifier: BDT

Cut efficiencies and optimal cut value

Fit to PDF components on MC

- Fit to MC distributions for different components:
- Signal: Sum of 3 Gaussian functions, two with the same mean, plus a 1 st order polynomial
- Charm background from other charm modes with similar invariant mass or mis-id pion/kaon, 1D not parametric pdf from MC
- Almost-flat combinatorial background (2 $2^{\text {nd }}$ order polynomial)

Simultaneous fit, parameters splitting

- Simultaneous binned extended maximum likelihood fit to 20 separated sub-samples: positive and negative candidates, 10 bins of $\cos \theta_{D_{(s)}}^{*}($ bin $\mathrm{b} 0[-1.0,-0.8], \ldots$, bin b 9 [+0.8, +1.0])
- Complicate splitting, not for all the parameters or for all the bins. Some parameters are set to a constant value

Name	Description	$D^{ \pm} \rightarrow K_{s}^{0} K^{ \pm}$	$D_{s}^{ \pm} \rightarrow K_{s}^{0} K^{ \pm}$	$D_{s}^{ \pm} \rightarrow K_{s}^{0} \pi^{ \pm}$
$N_{\text {sig }}$	Signal yield	10	10	10
$A_{\text {sig }}$	Signal asymmetry	10	10	10
$A_{\text {charm }}$	Charm bkg asymmetry	-	-	1
$N_{\text {charm }}$	Charm bkg yield	10	10	10
$N_{\text {comb }}$	Combin. bkg yield	$7\left(\mathrm{~b} 0-2: N_{\text {comb }}=0\right)$	10	10
$A_{\text {comb }}$	Combin. bkg asymm	10	10	10
m_{1}	Mean of 1st Gaussian	1	1	1
σ_{1}	Width of 1st Gaussian	10	10	$\mathrm{~b} 0-3, \mathrm{~b} 4, \mathrm{~b} 5$,
$\mathrm{b} 6, \mathrm{~b} 7, \mathrm{~b} 8, \mathrm{~b} 9$				
m_{2}	Mean of 2nd Gaussian	1	1	-
σ_{2}	Width of 2nd Gaussian	1	1	-
f_{1}	Fraction of 1st Gaussian	$\mathrm{b} 0, \mathrm{~b} 1, \mathrm{~b} 2-8\left(\mathrm{~b} 9: f_{1}=1\right)$	$9\left(\mathrm{~b} 9: f_{1}=1\right)$	-
a	1st coef. of combin. bkg	$\mathrm{b} 0, \mathrm{~b} 1, \mathrm{~b} 2$, $\mathrm{b} 3-7, \mathrm{~b} 8, \mathrm{~b} 9$	$\mathrm{b} 0, \mathrm{~b} 1, \mathrm{~b} 2, \mathrm{~b} 3$, $\mathrm{b} 4-7, \mathrm{~b} 8, \mathrm{~b} 9$	$\mathrm{b} 0, \mathrm{~b} 1-6, \mathrm{~b} 7$, $\mathrm{b} 8, \mathrm{~b} 9$
b	2nd coef. of combin. bkg	1	1	-
Total \# of floating parameters	70	80	64	

Systematics

- Similar to those for the $D^{ \pm} \rightarrow K_{S}^{0} \pi^{ \pm}$mode:
- Contamination of control sample due to charge asymmetry in PID selector efficiency, estimated using the $A_{C P}$ deviation in the fit to the MC sample with and w/o corrections (a correction to the final value is also applied for this effect)
- Uncertainty for correction factors of detector induced asymmetry, estimated using A_{CP} standard deviation for 500 fits to the data sample where correction factors are smeared by their errors
- Basic selection for generic tracks sample, estimated using the asymmetry in the MC for truth matched tracks
- Choice of binning $\cos \theta_{D_{(s)}}^{*}$, estimated using the largest $A_{C P}$ deviation in the fit with 8 and 12 bins
- Deviation due to $K^{0}-\bar{K}^{0}$ regeneration([arxiv:1006.1938]), estimated integrating the nuclear cross-section for $\mathrm{K}^{+} / \mathrm{K}^{-}$(isospin symmetry), the material in the BaBar tracking system, and our K_{S} reconstruction efficiency (from MC)
- Deviation due to $\mathrm{K}_{\mathrm{s}}-\mathrm{K}_{\mathrm{L}}$ interference (see next slide)

$\mathrm{K}_{\mathrm{s}}-\mathrm{K}_{\mathrm{L}}$ interference

- Reconstructed state is $\pi \pi$, not pure K_{s}, but overlap of K_{s} and K_{L}
- Effective A_{CP} asymmetry calculation using correct BF's K^{0}-> $\pi \pi$ plus K^{0} reconstruction efficiency vs time [arXiv:1110.3790v1]
$A_{\text {effective }}=\frac{\int_{0}^{\infty} \varepsilon(t)\left(\Gamma_{\pi \pi}(t)-\bar{\Gamma}_{\pi \pi}(t)\right) d t}{\int_{0}^{\infty} \varepsilon(t)\left(\Gamma_{\pi \pi}(t)+\bar{\Gamma}_{\pi \pi}(t)\right) d t}$
- Reconstruction efficiency from MC
- Small deviations, few percent or less

