Search for CP Violation in charm decays

Riccardo Cenci

University of Maryland On behalf of the BaBar Collaboration

Charm 2012, 5th International Workshop on Charm Physics May 14-17th, 2012, Honolulu, Hawai'i

May 16^{tb}, 2012

CP violation in the SM

 CP violation in the SM results from KM complex phases in the CKM quark mixing matrix:

$$\begin{bmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix}$$

Using the Wolfenstein parametrization:

$$\begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta + \frac{i^2}{2}\eta\lambda^2) \\ -\lambda & 1 - \frac{\lambda^2}{2} - i\eta A^2\lambda^4 & A\lambda^2(1 + i\eta\lambda^2) \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

- Charmed mesons: CP violation is CKM suppressed $\mathcal{O}(10^{-3})$
- Observing deviations from these small effects would be a sign of New Physics

Cabibbo-allowed decay modes

- Type of transitions:
 - Cabibbo Favored (CF) $c \to s \overline{d} u$
 - Singly-Cabibbo-Suppressed (SCS) $c \to s\overline{s}u, c \to d\overline{d}u$
 - Doubly-Cabibbo-Suppressed (DCS) $c
 ightarrow d\overline{s} u$
 - $D_s^{\pm} \rightarrow K_s^0 K^{\pm}$ decay can proceed through CF and DCS transitions, but CF dominates: one phase and CPV from SM is negligible

Cabibbo-suppressed decay modes

- No CF transition for some decays, so amplitude for tree and penguin diagrams are comparable (penguins can proceed only through SCS transitions)
- Penguins carry a weak phase relative to the tree amplitude, so there is a relevant tree-penguin interference

4

Cabibbo-suppressed decay modes

- No CF transition for some decays, so amplitude for tree and penguin diagrams are comparable (penguins can proceed only through SCS transitions)
- Penguins carry a weak phase relative to the tree amplitude, so there is a relevant tree-penguin interference

CP asymmetry measurement

• Time integrated CP asymmetry

$$A_{CP} = \frac{\mathcal{B}\left(D_{(s)}^{+} \to K_{S}^{0}(\pi^{+}, K^{+})\right) - \mathcal{B}\left(D_{(s)}^{-} \to K_{S}^{0}(\pi^{-}, K^{-})\right)}{\mathcal{B}\left(D_{(s)}^{+} \to K_{S}^{0}(\pi^{+}, K^{+})\right) + \mathcal{B}\left(D_{(s)}^{-} \to K_{S}^{0}(\pi^{-}, K^{-})\right)}$$

• Many systematics cancel out, sensitivity down to ~0.2%

- Charged mesons, only direct CPV
- Contribution from $K^0 \overline{K}^0$ mixing [PDG 2010]: +(-)0.332±0.006% when a K^0 (\overline{K}^0) is in the final state
- Any deviation would be evidence of CP violation in the charm system
- Already published by BaBar: $D^{\pm} \to K_S^0 \pi^{\pm}$ [Phys. Rev. D 83, 071103(R) (2011)] ACP=(-0.11±0.13(stat)±0.10(syst))% (after removing $K^0 - \overline{K}^0$ mixing contrib.)

Reconstructed asymmetry

• Measured asymmetry is the sum of three contributions:

$$A_{\rm rec}^{D_{(s)}} = \frac{A_{CP}^{D_{(s)}}}{A_{CP}^{D}} + A_{FB}^{D_{(s)}}(\cos\theta_{D_{(s)}}^{*}) + \frac{A_{\varepsilon}^{(\pi,K)}(p_{(\pi,K)}^{\rm lab},\cos\theta_{(\pi,K)}^{\rm lab})}{A_{\varepsilon}^{(\pi,K)}(p_{(\pi,K)}^{\rm lab},\cos\theta_{(\pi,K)}^{\rm lab})}$$

- CP asymmetry, A_{CP}
- Fwd/Bwd asymmetry in $c\overline{c}$ production, A_{FB}
 - virtual photon interference with virtual Z⁰
- Detector-induced charge reconstruction asymmetry, A_{ε}
 - reconstruction asymmetries and material interactions
 - affecting only the track not coming from the Ks
- Corrections will be applied to remove A_{ε} , while $A_{\rm CP}$ and $A_{\rm FB}$ are measured

Charge asymmetry in reconstruction

Data-driven method to remove detector-induced asymmetry A_ε
100M generic tracks with no asymmetry from physics: Y(4S) events, after continuum subtraction

$$N_{\rm rec}(\vec{p}) = N_{\rm recOnPeak}(\vec{p}) - N_{\rm recOffPeak}(\vec{p}) \cdot \frac{\mathcal{L}_{\rm OnPeak}}{\mathcal{L}_{\rm OffPeak}}$$

- <u>Step 1</u>: criteria to strongly reduce the asymmetry:
 - veto on tracks identified as **proton** and **electron**
 - Pion: veto on tracks identified as kaon
 - Kaon: tracks should be identified as kaon but not as pion
 - p_T > 0.4 GeV/c
- Residual asymmetry: pions -0.25±0.03%, kaons 0.23±0.05% (compatible with Y(4S) MC)
- <u>Step 2</u>: corrections to remove the residual asymmetry

Charge asymmetry correction

$$R = \frac{\epsilon^+(\vec{p})}{\epsilon^-(\vec{p})} = \frac{N_{\rm rec}^+(\vec{p})}{N_{\rm rec}^-(\vec{p})}$$

- Equally populated bins of momentum magnitude and cosine of polar angle
- Small correction

 (~1-2%) applied to
 negative D_(s) candidates
- Systematic contribution will be included later

Charm 2012, Honolulu, Hawai'i, May 16, 2012

Invariant Mass Distributions

Riccardo Cenci

10

Charm 2012, Honolulu, Hawai'i, May 16, 2012

PDF components

- Fit to invariant mass distributions using three components:
 - Signal: 2 or 1 Gaussian functions
 - Charm background from other charm modes (see table) with similar invariant mass or mis-id pion/kaon: 1D not parametric PDF from MC
 - Combinatorial background: 2nd or 1st order polynomial

	$D^{\pm} \to K^0_S K^{\pm}$	$D_s^{\pm} \to K_s^0 K^{\pm}$	$D_s^{\pm} \to K_s^0 \pi^{\pm}$
Signal PDF	2 Gauss	2 Gauss	1 Gauss
Charm Bkg PDF	$D_s^{\pm} \to K_s^0 K^{\pm}$	$D^{\pm} \to K^0_S \pi^{\pm}$	$D^{\pm} \to K^0_S \pi^{\pm}$
Combinatorial PDF	2^{nd} order poly	2^{nd} order poly	1 st order poly

Charm 2012, Honolulu, Hawai'i, May 16, 2012

ACP, AFB extraction

Riccardo Cenci

Charm 2012, Honolulu, Hawai'i, May 16, 2012

Systematics

- Dominant contributions:
 - correction of detector-induced asymmetry
 - choice of binning (only for $D_s^{\pm} \to K_s^0 \pi^{\pm}$)

Syst. uncertainty (absolute)	$D^{\pm} \to K^0_S K^{\pm}$	$D_s^{\pm} \to K_s^0 K^{\pm}$	$D_s^{\pm} \to K_s^0 \pi^{\pm}$
Efficiency of PID selectors	0.05%		0.05%
Statistics of control sample	0.23%		0.06%
Selection of control sample	0.01%		0.01%
$\cos \Theta^*$ binning	0.04%	0.02%	0.27%
$K^0 - \overline{K}^0$ regeneration [1]	0.05%	0.05%	0.06%
$K_{S}^{0}-K_{L}^{0}$ interference [2]	0.015%	0.014%	0.008%
Total	0.25%	0.24%	0.29%

Final values

• Corrections to the final values for biases and interference effect

	$D^{\pm} \to K^0_S K^{\pm}$	$D_s^{\pm} \to K_S^0 K^{\pm}$	$D_s^{\pm} \to K_S^0 \pi^{\pm}$
A_{CP} value from the fit	$(+0.16 \pm 0.36)\%$	$(0.00 \pm 0.23)\%$	$(+0.6 \pm 2.0)\%$
Correction for the bias from toy MC experiments	+0.013%	-0.01%	-
Correction for the bias in the PID selectors	-0.05%	-0.05%	-0.05%
Correction for the $K_S^0 - K_L^0$ interference (ΔA_{CP})	+0.015%	+0.014%	-0.008%
A_{CP} final value	$(+0.13 \pm 0.36 \pm 0.25)\%$	$(-0.05 \pm 0.23 \pm 0.24)\%$	$(+0.6 \pm 2.0 \pm 0.3)\%$
A_{CP} contribution from $K^0 - \overline{K}^0$ mixing	$(-0.332 \pm 0.006)\%$	$(-0.332 \pm 0.006)\%$	$(+0.332 \pm 0.006)\%$
A_{CP} final value (charm only)	$(+0.46 \pm 0.36 \pm 0.25)\%$	$(+0.28 \pm 0.23 \pm 0.24)\%$	$(+0.3 \pm 2.0 \pm 0.3)\%$

469 fb⁻¹

(value)±(stat)±(syst)

• No sign of physics beyond the SM

Conclusions

• We measure the time-integrated CP asymmetry in the following modes:

$$D^{\pm} \to K^0_S K^{\pm} \qquad D^{\pm}_s \to K^0_S K^{\pm} \qquad D^{\pm}_s \to K^0_S \pi^{\pm}$$

- Systematic error down to 0.2% by using a data-driven method to remove asymmetry induced by detector effects
- Final values are compatible with SM predictions within one standard deviation

$$\begin{array}{rl} BABAR(469 \ \text{fb}^{-1}) & \text{Belle}(673 \ \text{fb}^{-1}) \text{[1]} \\ \hline D^+ \to K^0_S K^+ & (+0.13 \pm 0.36 \pm 0.25)\% & (-0.16 \pm 0.58 \pm 0.25)\% \\ D^+_s \to K^0_S K^+ & (-0.05 \pm 0.23 \pm 0.25)\% & (+0.12 \pm 0.36 \pm 0.22)\% \\ D^+_s \to K^0_S \pi^+ & (+0.6 \pm 2.0 \pm 0.3)\% & (5.45 \pm 2.50 \pm 0.33)\% \end{array}$$

[1] Phys. Rev. Lett. 104, 181602 (2010)

CP asymmetry extraction

• After removing the charge asymmetry induced by detector effect, the measured asymmetry can be written as:

$$A = \frac{N_{D^+} - N_{D^-}}{N_{D^+} + N_{D^-}} = \frac{A_{FB} + A_{CP}}{1 + A_{FB}A_{CP}} \approx A_{FB} + A_{CP}$$

- A_{FB} asymmetry is an odd function of the D polar angle Θ in CMS (only first order term below): $A_{FB}(\cos \Theta) = \frac{8}{3}a_{FB}\frac{\cos \Theta}{1 + \cos^2 \Theta}$ $A_{CP} = \frac{A^{\cos \Theta > 0} + A^{\cos \Theta < 0}}{2}$ $A_{CP} = \frac{A^{\cos \Theta > 0} - A^{\cos \Theta < 0}}{2}$
- Each pairs of symmetric cos \(\Omega\) bins produces one asymmetry value
 Values are combined using a \(\chi^2\) minimization

Cut-based analysis selection

- D(s) candidates fully reconstructed
- Selection during processing
 - D(s) candidate
 - Chi² probabilities for the kinematic fit more than 0.1%
 - Ks candidate
 - Decay length significance, greater than 3
 - Chi² probabilities for the kinematic fit more than 0.1%
- Selection cuts:
 - D_(s) candidate
 - Invariant mass, within 65 MeV/c² from nominal mass
 - CMS momentum, $p^* > 2$ for D mode, $p^* > 2.6$ for D_s, for both $p^* < 5$ GeV/c,
 - Transverse distance, $|d_0| < 0.3$ cm
 - Lifetime using decay distance in the transverse plane, -15 < τ < 35 ps
 - Ks candidate
 - Invariant mass, within 10 MeV/c² from nominal mass
- For data/MC agreement, truth matched charm decays are rescaled to account for not exact branching fractions in the simulation

Multivariate Selection

- Multivariate analysis using a Boosted Decision Tree (BDT)/ Likelihood method trained on MC events
- 7 kinematic variables:
 - D_(s): lifetime, CMS mom and decay distance in transverse plane
 - K_S and pion: momentum and transverse momentum
- Criterion optimized using significance: $S/\sqrt{(S+B)}$

Fit to PDF components on MC

- Fit to MC distributions for different components:
 - Signal: Sum of 3 Gaussian functions, two with the same mean, plus a 1st order polynomial
 - Charm background from other charm modes with similar invariant mass or mis-id pion/kaon, 1D not parametric pdf from MC
 - Almost-flat combinatorial background (2nd order polynomial)

Simultaneous fit, parameters splitting

- Simultaneous binned extended maximum likelihood fit to 20 separated sub-samples: positive and negative candidates, 10 bins of $\cos \theta^*_{D_{(s)}}$ (bin b0 [-1.0,-0.8], ..., bin b9 [+0.8,+1.0])
- Complicate splitting, not for all the parameters or for all the bins. Some parameters are set to a constant value

Name	Description	$D^{\pm} \to K^0_S K^{\pm}$	$D_s^{\pm} \to K_s^0 K^{\pm}$	$D_s^{\pm} \to K_s^0 \pi^{\pm}$
$N_{\rm sig}$	Signal yield	10	10	10
$A_{\rm sig}$	Signal asymmetry	10	10	10
$A_{\rm charm}$	Charm bkg asymmetry			1
$N_{\rm charm}$	Charm bkg yield	10	10	10
$N_{\rm comb}$	Combin. bkg yield	7 (b0-2: $N_{\rm comb} = 0$)	10	10
$A_{\rm comb}$	Combin. bkg asymm	10	10	10
m_1	Mean of 1st Gaussian	1	1	1
σ_1	Width of 1st Gaussian	10	10	b0-3,b4,b5, b6 b7 b8 b9
m_2	Mean of 2nd Gaussian	1	1	-
σ_2	Width of 2nd Gaussian	1	1	-
f_1	Fraction of 1st Gaussian	b0,b1,b2-8 (b9: $f_1 = 1$)	9 (b9: $f_1 = 1$)	-
	1st coef. of combin. bkg	b0,b1,b2,	b0,b1,b2,b3,	b0,b1-6,b7,
		b3-7,b8,b9	b4-7,b8,b9	b8,b9
b	2nd coef. of combin. bkg	1	1	-
Total #	of floating parameters	70	80	64

Systematics

- Similar to those for the $D^{\pm} \to K^0_{\scriptscriptstyle S} \pi^{\pm}$ mode:
 - Contamination of control sample due to charge asymmetry in PID selector efficiency, estimated using the A_{CP} deviation in the fit to the MC sample with and w/o corrections (a correction to the final value is also applied for this effect)
 - Uncertainty for correction factors of detector induced asymmetry, estimated using A_{CP} standard deviation for 500 fits to the data sample where correction factors are smeared by their errors
 - Basic selection for generic tracks sample, estimated using the asymmetry in the MC for truth matched tracks
 - Choice of binning $\cos \theta^*_{D_{(s)}}$, estimated using the largest A_{CP} deviation in the fit with 8 and 12 bins
 - Deviation due to $K^0 \overline{K}^0$ regeneration([arxiv:1006.1938]), estimated integrating the nuclear cross-section for K⁺/K⁻ (isospin symmetry), the material in the BaBar tracking system, and our K_S reconstruction efficiency (from MC)
 - Deviation due to K_S-K_L interference (see next slide)

Ks-KL interference

- Reconstructed state is ππ, not pure K_S, but overlap of K_S and K_L
- Effective A_{CP} asymmetry calculation using correct BF's K⁰-> ππ plus K⁰ reconstruction efficiency vs time [arXiv:1110.3790v1]

$$A_{\text{effective}} = \frac{\int_0^\infty \varepsilon(t) \left(\Gamma_{\pi\pi}(t) - \overline{\Gamma}_{\pi\pi}(t)\right) dt}{\int_0^\infty \varepsilon(t) \left(\Gamma_{\pi\pi}(t) + \overline{\Gamma}_{\pi\pi}(t)\right) dt}$$

- Reconstruction efficiency from MC
- Small deviations, few percent or less

