

$D \rightarrow K \ell v$ and $D \rightarrow \pi \ell v$ form factors from Lattice QCD

Jonna Koponen University of Glasgow HPQCD collaboration*

*C.T.H. Davies, G. Donald, E. Follana, J. K., G. P. Lepage, H. Na, and J. Shigemitsu

Charm 2012, Honolulu, Hawai'i, USA, May 2012

Motivation

- A high precision calculation of *D* meson semileptonic form factors: the shape of f_0 and f_+ as a function of q^2
- This is part of the HPQCD program to calculate meson spectra, decay constants, form factors, and other QCD observables from first principles
 → use Lattice QCD
- Highly Improved Staggered Quark formalism (HISQ) enables us to treat charm quarks the same way as light quarks
- Combining a lattice calculation with experimental results allows us to extract CKM matrix elements

Lattice QCD = fully nonperturbative QCD calculation

RECIPE

- Generate sets of gluon fields for Monte
 Carlo integration of Path Integral (incl.
 effect of *u*, *d* and *s* sea quarks)
- Calculate averaged "hadron correlators" from valence quark propagators

- Fit as a function of time to obtain masses and simple matrix elements
- Determine a and fix m_q to get results in physical units
- extrapolate to a=0, $m_{u,d} = phys$ for real world

Fitting the Lattice QCD results

momentum p

- Fit 2-point and 3-point correlators simultaneously
- Multi-exponential fits to reduce systematical errors from the excited states
- Use Bayesian priors to constrain fit parameters
- High statistics (~100000 correlators) to get small statistical errors
- Can do any q^2 by giving one of the quarks a momentum p

Shape of the form factors: $D \rightarrow K \ell v$

- Both scalar and vector form factor, f_0 and f_+ , as a function of q^2
- q² dependence
 is well
 understood
 qualitatively

Shape of the form factors: $D_s \rightarrow \eta_s \ell v$

- η_s is the pseudoscalar $s\overline{s}$ meson (lattice only, not a physical meson)
- Same charmstrange current as in $D \rightarrow K \ell v$

Shape of the FFs: spectator quark

- The difference between $D \rightarrow K \ell v$ and $D_s \rightarrow \eta_s \ell v$ is the spectator quark - light vs. strange
- The shapes of the form factors are same within 3%

Shape of the FFs: $\pi \overbrace{l \text{ or } s}^{l} \xrightarrow{c} D_{D_s}$ $D \rightarrow \pi \ell v \text{ and } D_s \rightarrow K \ell v \xrightarrow{spectator quark}^{spectator quark}$

c D to π f₀ c=coarse, f=fine 1.4 c005 D to π f_o f D to π f₀ **#** 1.3 $c D_s to K f_0$ $c005 D_s to K f_0$ $f_0(q^2) \text{ or } f_+(q^2)$ 60 $f D_s to K f_0$ + c D to π f₁ Ð c005 D to $\pi~f_{_{\!\!\!\!\!-}}$ $\Theta \ominus$ f D to π f $c D_s to K f_+$ € €€ $c005 D_s$ to K f₊ + $f D_s to K f_+$ 0.8 HPQCD preliminary 0.7 0.6 0.5 2.5 1 5 2 $q^2 (GeV^2)$

1.5

- Charm to light decay
- Both decays experimentally accessible
- spectator quark makes very little difference

Form factors: $D_s \rightarrow \phi \ell v$

- On the lattice one can also calculate form factors for a
 D_s meson to a
 vector meson semileptonic decay
- $D_s \rightarrow \phi \ell v$ is charm to strange decay like $D_s \rightarrow \eta_s \ell v$ and $D \rightarrow K \ell v$

The z-expansion

• Convert to z variable and fit \tilde{f} as power series in z

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+}}{\sqrt{t_+ - q^2} + \sqrt{t_+}}, \quad t_+ = (m_D + m_K)^2,$$

$$\tilde{f}_0^{D \to K}(z) = \sum_{n \ge 0} b_n(a) z^n, \quad \tilde{f}_+^{D \to K}(z) = \sum_{n \ge 0} c_n(a) z^n, \quad c_0 = b_0$$

C. Bourrely, I. Caprini and L Lellouch, PRD 79, 013008 (2009)

Continuum and chiral extrapolation

 Fit in *z*-space, including terms that depend on lattice spacing and quark masses

• Take a=0 and $m_q=m_q^{\text{phys}}$

Extracting V_{cs}

Our best, PRELIMINARY value is $V_{cs}=0.965(14)$

Decay rates in q^2 bins

Experimental data: CLEO, PRD 80, 032005 (2009); Belle, PRL 97, 061804 (2006); BaBar, PRD 76, 052005 (2007) and PRD 78, 051101(R) (2008)

Experimental data from BaBar, PRD 78, 051101(R) (2008)

Summary

- High precision Lattice QCD calculation of *D* meson semileptonic decay form factors
 - full q^2 range
 - many different mesons
 - $D \rightarrow K \ell v$ form factors to 1.6% accuracy
- The D/D_s FFs are very insensitive to the spectator quark, and this is expected to be true for B/B_s as well
- Calculate decay rates in q² bins to compare with experiments - get very good agreement
- $D \rightarrow \pi \ell v$ and $D_s \rightarrow K \ell v$ form factors coming soon!

Thank you!

Spare slides

Form factors:
$$D_s \rightarrow \phi \ell v$$

$$\begin{split} \langle \phi(p',\epsilon) | V^{\mu} - A^{\mu} | D(p) \rangle &= \frac{2i\epsilon^{\mu\nu\alpha\beta}}{M + m_{\phi}} \epsilon^{*}_{\nu} p'_{\alpha} p_{\beta} V(q^{2}) + (M + m_{\phi}) \epsilon^{*\mu} A_{1}(q^{2}) \\ &+ \frac{\epsilon^{*} \cdot q}{M + m_{\phi}} (p + p')^{\mu} A_{2}(q^{2}) + 2m_{\phi} \frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{3}(q^{2}) \\ &- 2m_{\phi} \frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{0}(q^{2}), \end{split}$$

where $V^{\mu} = \bar{q}' \gamma^{\mu} Q, A^{\mu} = \bar{q}' \gamma^{\mu} \gamma_5 Q,$

and
$$A_3(q^2) = \frac{M + m_{\phi}}{2m_{\phi}} A_1(q^2) - \frac{M - m_{\phi}}{2m_{\phi}} A_2(q^2)$$
 with $A_0(0) = A_3(0)$

$D_s \rightarrow \phi \ell v$ differential decay rate

$$\begin{aligned} \frac{\mathrm{d}\Gamma(P \to V\ell\nu, V \to P_1P_2)}{\mathrm{d}q^2\mathrm{d}\cos\theta_V\mathrm{d}\cos\theta_\ell\mathrm{d}\chi} &= \frac{3}{8(4\pi)^4}G_F^2|V_{q'Q}|^2\frac{p_Vq^2}{M^2}\mathcal{B}(V \to P_1P_2) \\ &\times \left\{(1 - \eta\cos\theta_\ell)^2\sin^2\theta_V|H_+(q^2)|^2 \\ &+ (1 + \eta\cos\theta_\ell)^2\sin^2\theta_V|H_-(q^2)|^2 \\ &+ 4\sin^2\theta_\ell\cos^2\theta_V|H_0(q^2)|^2 \\ &- 4\eta\sin\theta_\ell(1 - \eta\cos\theta_\ell)\sin\theta_V\cos\theta_V\cos\theta_\chi H_+(q^2)H_0(q^2) \\ &+ 4\eta\sin\theta_\ell(1 + \eta\cos\theta_\ell)\sin\theta_V\cos\theta_V\cos\theta_\chi H_+(q^2)H_0(q^2) \\ &- 2\sin^2\theta_\ell\sin^2\theta_V\cos2\chi H_+(q^2)H_-(q^2)\}, \end{aligned}$$

where the helicity amplitudes are

$$H_0(q^2) = \frac{1}{2m_\phi\sqrt{q^2}} \left[(M^2 - m_\phi^2 - q^2)(M + m_\phi)A_1(q^2) - 4\frac{M^2 p_\phi^2}{M + m_\phi}A_2(q^2) \right]$$

$$H_{\pm}(q^2) = (M + m_{\phi})A_1(q^2) \mp \frac{2Mp_{\phi}}{M + m_{\phi}}V(q^2)$$

Lattice configurations

- MILC $n_f=2+1$ as quarked lattice configurations
- Highly Improved Staggered Quarks (HISQ) as valence quarks
- coarse: $20^3 \times 64$ and $24^3 \times 64$, about $(2.4 \text{ fm})^3$, $a \approx 0.12 \text{ fm}$ valence m_s tuned, $m_l \approx m_s/3.5$ and $m_l \approx m_s/7$
- fine: 28³×96, about (2.4 fm)³, a≈0.085 fm
 valence m_s tuned, m_l≈m_s/4.2
- High statistics calculation:
 - 2000 configurations in each ensemble
 - 8 (coarse) and 4 (fine) time sources per config.