
$D \rightarrow K \ell v$ and $D \rightarrow \pi \ell v$ form factors from Lattice QCD

Jonna Koponen
University of Glasgow HPQCD collaboration*

*C.T. H. Davies, G. Donald, E. Follana, J. K., G. P. Lepage, H. Na, and J. Shigemitsu

Charm 20I2, Honolulu, Hawai'i, USA, May 20 I2

Motivation

- A high precision calculation of D meson semileptonic form factors: the shape of f_{0} and f_{+}as a function of q^{2}
- This is part of the HPQCD program to calculate meson spectra, decay constants, form factors, and other QCD observables from first principles \rightarrow use Lattice QCD
- Highly Improved Staggered Quark formalism (HISQ) enables us to treat charm quarks the same way as light quarks
- Combining a lattice calculation with experimental results allows us to extract CKM matrix elements

Lattice $\mathrm{QCD}=$ fully nonperturbative QCD calculation

RECIPE

- Generate sets of gluon fields for Monte Carlo integration of Path Integral (incl. effect of u, d and s sea quarks)
Calculate averaged "hadron correlators" from valence quark propagators

- Fit as a function of time to obtain masses and simple matrix elements
- Determine a and fix m_{q} to get results in physical units
- extrapolate to $a=0, m_{u, d}=$ phys for real world

Semileptonic form factors

$=3 \mathrm{pt}$ amplitudes

$$
\langle K| S|D\rangle=f_{0}^{D \rightarrow K}\left(q^{2}\right) \frac{M_{D}^{2}-M_{K}^{2}}{m_{0 c}-m_{0 s}}
$$

$$
\langle K| V^{\mu}|D\rangle=f_{+}^{D \rightarrow K}\left(q^{2}\right)\left[p_{D}^{\mu}+p_{K}^{\mu}-\frac{M_{D}^{2}-M_{K}^{2}}{q^{2}} q^{\mu}\right]
$$

$$
+f_{0}^{D \rightarrow K}\left(q^{2}\right) \frac{M_{D}^{2}-M_{K}^{2}}{q^{2}} q^{\mu} \rightarrow f_{0}(0)=f_{+}(0)
$$

From experiments: differential decay rates

$$
q^{\mu}=p_{D}^{\mu}-p_{K}^{\mu}
$$

$$
\frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2} p_{K}^{3}}{24 \pi^{3}}\left|V_{c s}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

$f_{+}\left(q^{2}\right)$ from theory or $V_{c s}$ from unitarity

Fitting the

Lattice QCD

results

momentum p

- Fit 2-point and 3-point correlators simultaneously
- Multi-exponential fits to reduce systematical errors from the excited states
- Use Bayesian priors to constrain fit parameters
- High statistics (~100000 correlators) to get small statistical errors
- Can do any q^{2} by giving one of the quarks a momentum p

Shape of the form factors: $D \rightarrow K \ell v$

- Both scalar and vector form factor, f_{0} and f_{+}, as a function of q^{2}
- q^{2} dependence is well understood qualitatively

Shape of the form

 factors: $D_{s} \rightarrow \eta_{s} t v$

- η_{s} is the pseudoscalar $s \bar{s}$ meson (lattice only, not a physical meson)
- Same charmstrange current as in $D \rightarrow K \ell v$

Shape of the FFs: spectator quark

- The difference between $D \rightarrow K \ell v$ and $D_{s} \rightarrow \eta_{s} \ell v$ is the spectator quark - light vs. strange
- The shapes of the form factors are same within 3%

Form factors: $D_{s} \rightarrow \phi \ell v$

- On the lattice one can also calculate form factors for a D_{s} meson to a vector meson semileptonic decay
- $D_{s} \rightarrow \phi \ell v$ is charm to strange decay like $D_{s} \rightarrow \eta_{s} \ell v$ and $D \rightarrow K \ell v$

The z-expansion

- Remove the poles
$\tilde{f}_{0}^{D \rightarrow K}\left(q^{2}\right)=\left(1-\frac{q^{2}}{M_{D_{s 0}}^{2}}\right) f_{0}^{D \rightarrow K}\left(q^{2}\right)$,
$\tilde{f}_{+}^{D \rightarrow K}\left(q^{2}\right)=\left(1-\frac{q^{2}}{M_{D_{s}^{*}}^{2}}\right) f_{+}^{D \rightarrow K}\left(q^{2}\right)$
poles and cut
 region
- Convert to z variable and fit \tilde{f} as power series in z
$z\left(q^{2}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}}}, \quad t_{+}=\left(m_{D}+m_{K}\right)^{2}$,
$\tilde{f}_{0}^{D \rightarrow K}(z)=\sum_{n \geq 0} b_{n}(a) z^{n}, \quad \tilde{f}_{+}^{D \rightarrow K}(z)=\sum_{n \geq 0} c_{n}(a) z^{n}, \quad c_{0}=b_{0}$
C. Bourrely, I. Caprini and L Lellouch, PRD 79, 013008 (2009)

Continuum and chiral extrapolation

- Fit in z-space, including terms that depend on lattice spacing and quark masses
- Take $a=0$ and $m_{q}=m_{q}{ }^{\text {phys }}$

Extracting $V_{c s}$

Our best, PRELIMINARY value is $V_{c s}=0.965(14)$

Decay rates in q^{2} bins

BaBar + lattice

Experimental data: CLEO, PRD 80, 032005 (2009); Belle, PRL 97, 061804 (2006); BaBar, PRD 76, 052005 (2007) and PRD 78, 051101(R) (2008)

$D_{s} \rightarrow \phi \ell v$ angular

 distributions

D_{s}

Experimental data from BaBar, PRD 78, 051101(R) (2008)

Summary

- High precision Lattice QCD calculation of D meson semileptonic decay form factors
- full q^{2} range
- many different mesons
- $D \rightarrow K \ell v$ form factors to 1.6% accuracy
- The D / D_{s} FFs are very insensitive to the spectator quark, and this is expected to be true for B / B_{s} as well
- Calculate decay rates in q^{2} bins to compare with experiments - get very good agreement
- $D \rightarrow \pi \ell v$ and $D_{s} \rightarrow K \ell v$ form factors coming soon!

Thank you!

Spare slides

Form factors: $D_{s} \rightarrow \phi \ell v$

$$
\begin{aligned}
\left\langle\phi\left(p^{\prime}, \epsilon\right)\right| V^{\mu}-A^{\mu}|D(p)\rangle & =\frac{2 i \epsilon^{\mu \nu \alpha \beta}}{M+m_{\phi}} \epsilon_{\nu}^{*} p_{\alpha}^{\prime} p_{\beta} V\left(q^{2}\right)+\left(M+m_{\phi}\right) \epsilon^{* \mu} A_{1}\left(q^{2}\right) \\
& +\frac{\epsilon^{*} \cdot q}{M+m_{\phi}}\left(p+p^{\prime}\right)^{\mu} A_{2}\left(q^{2}\right)+2 m_{\phi} \frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{3}\left(q^{2}\right) \\
& -2 m_{\phi} \frac{\epsilon^{*} \cdot q}{q^{2}} q^{\mu} A_{0}\left(q^{2}\right)
\end{aligned}
$$

where $V^{\mu}=\bar{q}^{\prime} \gamma^{\mu} Q, A^{\mu}=\bar{q}^{\prime} \gamma^{\mu} \gamma_{5} Q$,
and $A_{3}\left(q^{2}\right)=\frac{M+m_{\phi}}{2 m_{\phi}} A_{1}\left(q^{2}\right)-\frac{M-m_{\phi}}{2 m_{\phi}} A_{2}\left(q^{2}\right)$ with $A_{0}(0)=A_{3}(0)$

$D_{s} \rightarrow \phi \ell v$ differential decay rate

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma\left(P \rightarrow V \ell \nu, V \rightarrow P_{1} P_{2}\right)}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{V} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \chi} & =\frac{3}{8(4 \pi)^{4}} G_{F}^{2}\left|V_{q^{\prime} Q}\right|^{2} \frac{p_{V} q^{2}}{M^{2}} \mathcal{B}\left(V \rightarrow P_{1} P_{2}\right) \\
& \times\left\{\left(1-\eta \cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{V}\left|H_{+}\left(q^{2}\right)\right|^{2}\right. \\
& +\left(1+\eta \cos \theta_{\ell}\right)^{2} \sin ^{2} \theta_{V}\left|H_{-}\left(q^{2}\right)\right|^{2} \\
& +4 \sin ^{2} \theta_{\ell} \cos ^{2} \theta_{V}\left|H_{0}\left(q^{2}\right)\right|^{2} \\
& -4 \eta \sin \theta_{\ell}\left(1-\eta \cos \theta_{\ell}\right) \sin \theta_{V} \cos \theta_{V} \cos \theta_{\chi} H_{+}\left(q^{2}\right) H_{0}\left(q^{2}\right) \\
& +4 \eta \sin \theta_{\ell}\left(1+\eta \cos \theta_{\ell}\right) \sin \theta_{V} \cos \theta_{V} \cos \theta_{\chi} H_{+}\left(q^{2}\right) H_{0}\left(q^{2}\right) \\
& \left.-2 \sin ^{2} \theta_{\ell} \sin ^{2} \theta_{V} \cos 2 \chi H_{+}\left(q^{2}\right) H_{-}\left(q^{2}\right)\right\}
\end{aligned}
$$

where the helicity amplitudes are

$$
\begin{aligned}
H_{0}\left(q^{2}\right) & =\frac{1}{2 m_{\phi} \sqrt{q^{2}}}\left[\left(M^{2}-m_{\phi}^{2}-q^{2}\right)\left(M+m_{\phi}\right) A_{1}\left(q^{2}\right)-4 \frac{M^{2} p_{\phi}^{2}}{M+m_{\phi}} A_{2}\left(q^{2}\right)\right] \\
H_{ \pm}\left(q^{2}\right) & =\left(M+m_{\phi}\right) A_{1}\left(q^{2}\right) \mp \frac{2 M p_{\phi}}{M+m_{\phi}} V\left(q^{2}\right)
\end{aligned}
$$

Lattice configurations

- MILC $n_{f}=2+1$ asqtad lattice configurations
- Highly Improved Staggered Quarks (HISQ) as valence quarks
- coarse: $20^{3} \times 64$ and $24^{3} \times 64$, about $(2.4 \mathrm{fm})^{3}, a \approx 0.12 \mathrm{fm}$ valence m_{s} tuned, $m_{l} \approx m_{s} / 3.5$ and $m_{l} \approx m_{s} / 7$
- fine: $28^{3} \times 96$, about $(2.4 \mathrm{fm})^{3}, a \approx 0.085 \mathrm{fm}$ valence m_{s} tuned, $m_{l} \approx m_{s} / 4.2$
- High statistics calculation:
- 2000 configurations in each ensemble
- 8 (coarse) and 4 (fine) time sources per config.

