
Recent Results of D semi-leptonic Decays

Chunlei Liu
Carnegie Mellon University
(BESIII Collaboration)

Charm 2012 Conference

Charm's Role in the Big Picture

Flavor Physics:

- * Over-constrain CKM matrix
- * Search for New Physics

Difficulties:

- * Mixing is not theoretically clean
- * V_{ub} is not theoretically clean

Example: V_{ub} from $B \rightarrow \pi I \nu$

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_{\pi}^3 |f_+(q^2)|^2$$

Latest result:

$$V_{ub} \times 10^3 = 3.92 + /-0.09(exp) + /-0.45(theory)$$

- * Needs inputs from Lattice QCD
- * Charm physics provides perfect calibration

Why Semi-leptonic D decays

- Large branching fraction, theoretically tractable, experimentally accessible
- P → P transition
 - Measure CKM elements
 - Validate LQCD
- P → V transition
 - More factors
 - No unquenched calculations existed
- Rare / forbidden modes
 - New physics, new interactions

Experiment Results

```
Exclusive D/D<sub>s</sub> decays
* P → P I v :
D → K/π e v (BF, form factor)
Results from FOCUS, Belle, Barbar, CLEOc Results from BESIII (brand new)
* P → V I v :
D<sup>+</sup> → K π e v (new)
D/D<sup>+</sup> → ρ e v (new)
* rare decay /search
D<sup>+</sup> → η/ η'/φ e v
D<sub>s</sub> → ω e v (new)
```

Inclusive D/D_s Decays

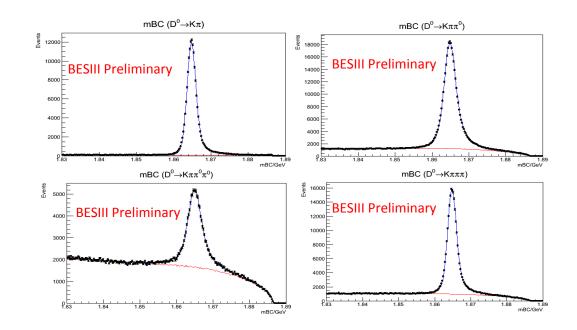
$D^0 \rightarrow Kev \& \pi e v$

- BESIII, ~2.93 fb⁻¹ data taken at $\psi(3770)$, ~923 pb⁻¹ analyzed (by two groups, partially blind analysis)
- Double tag technique,

tag side: fully reconstructed hadronic modes

signal side: missing neutrino inferred

$$U = E_{\text{miss}} - c \left| \vec{P}_{\text{miss}} \right| \approx 0$$

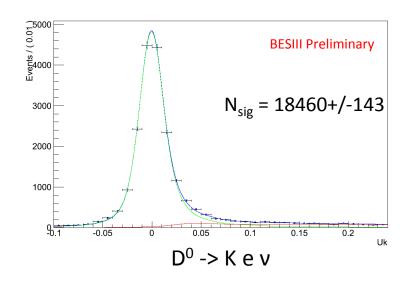

Simple differential decay rate function (massless lepton assumed)

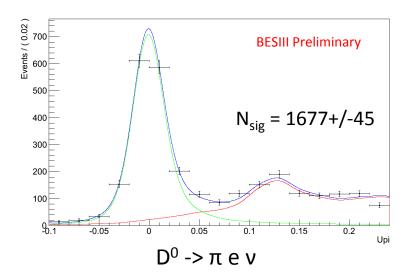
$$\frac{\Delta\Gamma(D \to \pi(K)e\nu)}{dq^2} = \frac{G_F^2 |V_{cd(s)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2$$

Tag Mode Reconstruction

- Four tag modes picked
- Best tag mode based minimum ΔE

$$\Delta E \equiv E - E_{beam}$$




BESIII Preliminary

Mode	Data Yield	Fraction of All Tags (%)	Tag Efficiency(%)
$D^0 \to K^- \pi^+$	$159,929 \pm 413$	20.7	62.08 ± 0.07
$D^0 \to K^- \pi^+ \pi^0$	$323,348 \pm 667$	41.8	33.56 ± 0.03
$D^0 \to K^- \pi^+ \pi^0 \pi^0$	$78,467 \pm 480$	10.1	$14.93 {\pm} 0.04$
$D^0 \to K^- \pi^+ \pi^- \pi^+$	$211,910 \pm 550$	27.4	36.80 ± 0.04

Signal Selection

- Two good oppositely-charged tracks
- Kaon/pion and electron PID requirements
- Electron has same charge as the tag side K
- Veto if any unmatched EMC shower is > 250 MeV (some background has extra π^0)

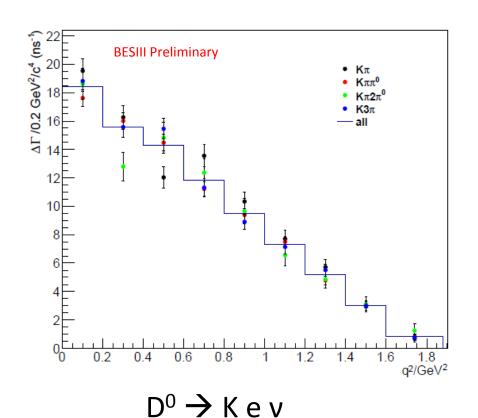
Branching Fraction Results

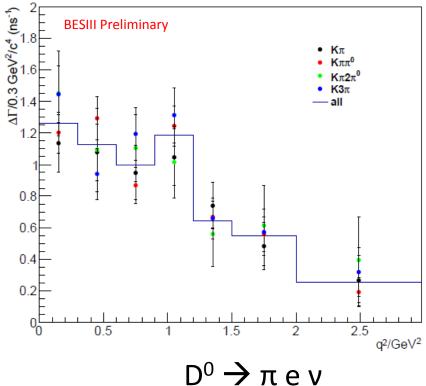
$$N_{tag}^{obs} = 2N_{D\bar{D}}B_{tag}\epsilon_{tag}$$

$$N_{sig}^{obs} = 2N_{D\bar{D}}B_{tag}B_{sig}\epsilon_{tag,sig}$$

$$B_{sig} = \frac{N_{sig}^{obs}}{\sum_{\alpha} N_{tag}^{obs,\alpha}\epsilon_{sig}^{\alpha}/\epsilon_{tag,sig}^{\alpha}}$$

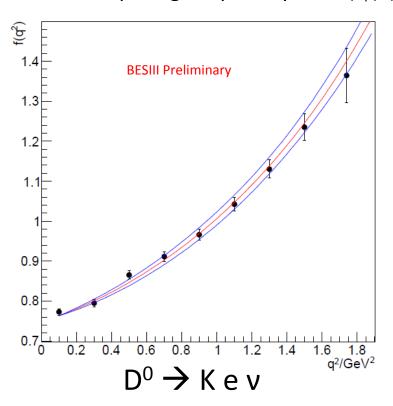
BESIII Preliminary

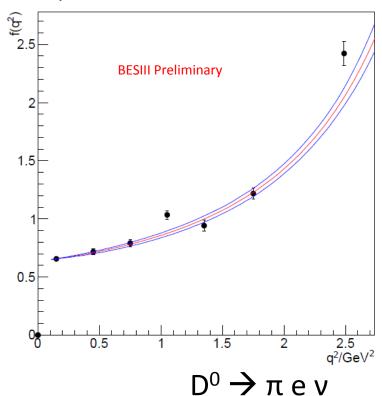

Mode	measured branching fraction(%)	PDG	CLEOc
$\bar{D^0} \to K^+ e^- \bar{\nu}$	$3.542 \pm 0.030 \pm 0.067$	3.55 ± 0.04	$3.50 \pm 0.03 \pm 0.04$
$\bar{D^0} \rightarrow \pi^+ e^- \bar{\nu}$	$0.288 \pm 0.008 \pm 0.005$	0.289 ± 0.008	$0.288 \pm 0.008 \pm 0.003$


^{*} Systematics are preliminary

^{*} Will improve using full (3x) data set in the near future

Partial Decay Rates Results


- Measured in each q² bin, by fitting U distribution
- Compare results from each tag mode



f(q²) Results

- Points: data with stat. error only
- Curves: from Fermilab-MILC within one stat. error, preliminary, arXiv:1111.5471 (XXIX International Symposium on Lattice Field Theory);
- Other theoretical work: HPQCD, arXiv:1111.0225
- Comparing shape only here (f₊(0) not known)

Form Factor Parameterization

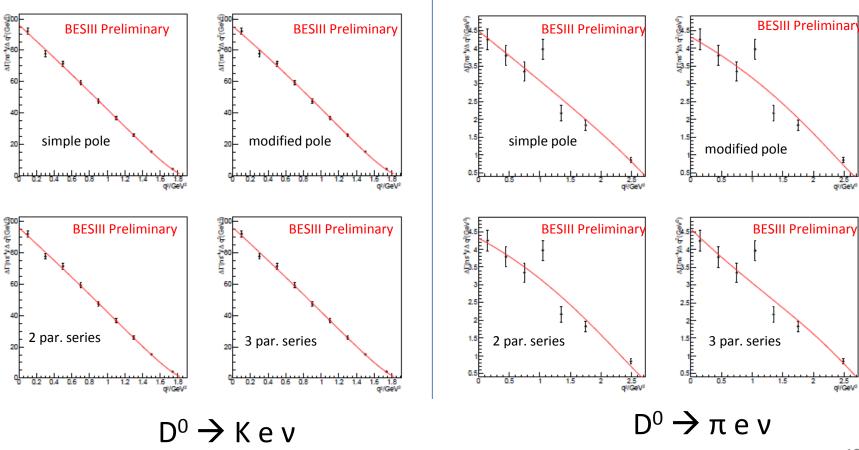
Fit to partial decay rates $\Delta\Gamma$

Simple pole model:

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - q^{2}/m_{pole}^{2}}$$

Modified pole model: Beciirevic and Kaidalov PLB 478, 417 (2000)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{pole}^{2}}\right) \left(1 - \alpha \frac{q^{2}}{m_{pole}^{2}}\right)}$$


Series expansion: Becher and Hill PLB 633, 61 (2006)

$$f_{+}(q^{2}) = \frac{1}{P(q^{2}) \phi(q^{2}, t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2}, t_{0}) \right]^{k}$$

Could fit: $f_{+}(0)$, $r_{1} = a_{2}/a_{1}$, $r_{2} = a_{3}/a_{1}$

Form Factor Fits

$$\chi^2 = \sum_{i,j=1}^n \left(\Delta \Gamma_i - g(q^2)_i \right) C_{ij}^{-1} \left(\Delta \Gamma_j - g(q^2)_j \right)$$

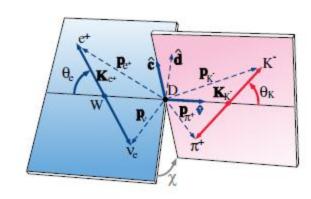
Form Factor Results

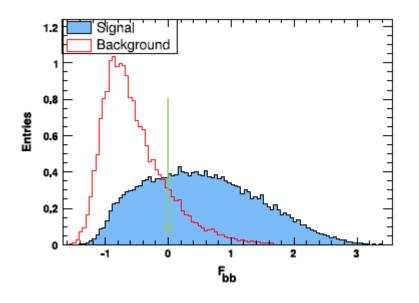
BESIII Preliminary

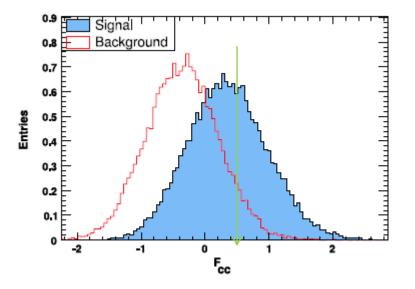
Simple Pole	$f_+(0) V_{cd(s)} $	m_{pole}	
$D^0 \to Ke\nu$	$0.729\pm0.005\pm0.007$	$1.943 {\pm} 0.025 {\pm} 0.003$	
$D^0 o \pi e \nu$	$0.142 \pm 0.003 \pm 0.001$	$1.876 {\pm} 0.023 {\pm} 0.004$	
Modified Pole	$f_+(0) V_{cd(s)} $	α	
$D^0 \to Ke\nu$	$0.725 \pm 0.006 \pm 0.007$	$0.265{\pm}0.045{\pm}0.006$	
$D^0 o \pi e \nu$	$0.140 \pm 0.003 \pm 0.002$	$0.315{\pm}0.071{\pm}0.012$	
2 par. series	$f_+(0) V_{cd(s)} $	r_1	
$D^0 \to Ke\nu$	$0.726\pm0.006\pm0.007$	$-2.034\pm0.196\pm0.022$	
$D^0 \to \pi e \nu$	$0.140\pm0.004\pm0.002$	$-2.117 \pm 0.163 \pm 0.027$	
3 par. series	$f_+(0) V_{cd(s)} $	r_1	r_2
$D^0 \to Ke\nu$	$0.729\pm0.008\pm0.007$	$-2.179\pm0.355\pm0.053$	$4.539\pm 8.927\pm 1.103$
$D^0 o \pi e \nu$	$0.144 \pm 0.005 \pm 0.002$	$-2.728\pm0.482\pm0.076$	$4.194 \pm 3.122 \pm 0.448$

$D^+ \rightarrow K \pi e \nu$

- BaBar, 347.5 fb⁻¹ Υ(4s), PRD 83, 072001 (2011)
- Measurements of $K\pi$ resonant and non-resonant contributions: S-wave, search of radially excited P-wave and D-wave
- Accurate measurements of K*(892) modes: resonance parameters, form factors
- $K\pi$ S-wave phase versus the $K\pi$ mass




FIG. 3 (color online). Definition of angular variables.


Differential decay rate has 5 degrees of freedom:

- m^2 , of the $k \pi$ system
- q^2 , of the e v system
- $cos(\theta_k)$
- $cos(\theta_e)$
- χ

Event Selection

- Particles boosted to the CM system
- Fisher discrimination variables to reject:
 - (1) BB_bar events (2) continuum background (mainly from charm)

Cuts: $F_{bb} > 0$, $F_{cc} > 0.5$

After cuts: 244×10^3 signal events left with S/B = 2.3

Form Factor Parameterization

Form factors expanded into partial waves:

F₁₀ for S-wave contribution,

F_{i1} and F_{i2} for P and D waves, respectively

$$\mathcal{F}_{1} = \mathcal{F}_{10} + \mathcal{F}_{11} \cos \theta_{K} + \mathcal{F}_{12} \frac{3\cos^{2}\theta_{K} - 1}{2};$$

$$\mathcal{F}_{2} = \frac{1}{\sqrt{2}} \mathcal{F}_{21} + \sqrt{\frac{3}{2}} \mathcal{F}_{22} \cos \theta_{K};$$

$$\mathcal{F}_{3} = \frac{1}{\sqrt{2}} \mathcal{F}_{31} + \sqrt{\frac{3}{2}} \mathcal{F}_{32} \cos \theta_{K}.$$

 $F_{i1} \rightarrow$ Helicity form factors \rightarrow axial-vector from factor $A_{1,2}(q^2)$ the vector form factor $V(q^2)$

$$\mathcal{F}_{11} = 2\sqrt{2}\alpha q H_0,$$
 $\mathcal{F}_{21} = 2\alpha q (H_+ + H_-),$ $\mathcal{F}_{31} = 2\alpha q (H_+ - H_-),$

Single pole mode:

$$V(q^2) = \frac{V(0)}{1 - \frac{q^2}{m_V^2}},$$

$$A_1(q^2) = \frac{A_1(0)}{1 - \frac{q^2}{m_A^2}},$$

$$A_2(q^2) = \frac{A_2(0)}{1 - \frac{q^2}{m_A^2}},$$

Form Factor Results

Fit the data with different models, the 2nd is the nominal fit:

$$S + \bar{K}^*(892)^0$$

$$\bar{K}^*(1410)^0$$

$$2.63 \pm 0.10$$

$$1.463 \pm 0.017$$

$$0.801 \pm 0.020$$

$$S + \bar{K}^*(892)^0$$

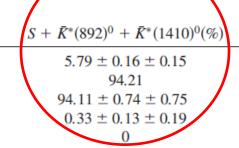
$$\bar{K}^*(1410)^0 + D$$

$$2.58 \pm 0.09$$

$$1.471 \pm 0.016$$

$$0.786 \pm 0.020$$

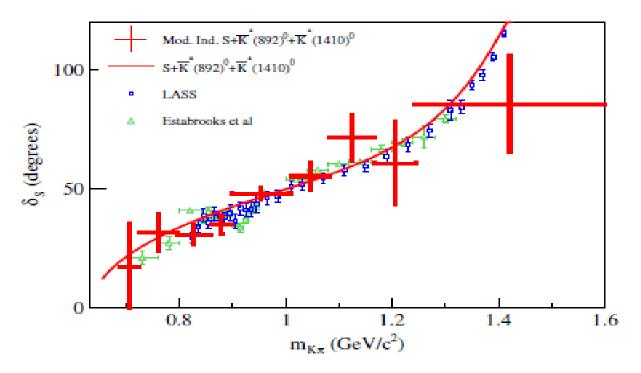
Evaluated at $q^2 = 0$, $r_V = V(0)/A_1(0)$, $r_2 = A_2(0)/A_1(0)$ Final results (with syst. Error), from 2^{nd} fit


floating
$$_{mA}$$

 $m_A = 2.63 (0.10) (0.13) \text{ GeV}$
 $r_V = 1.463 (0.017) (0.032)$
 $r_2 = 0.801 (0.020) (0.020)$

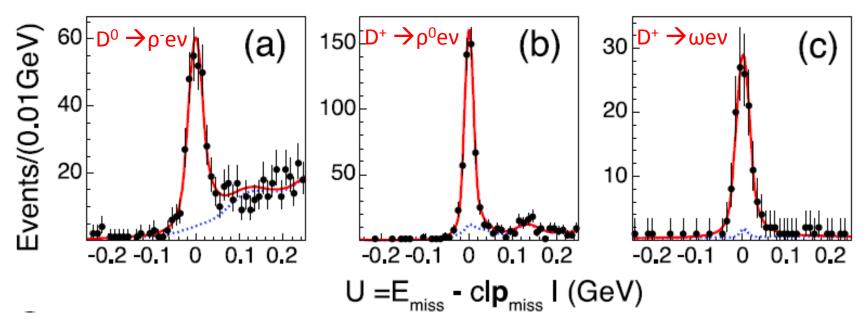
fixing
$$m_A = 2.5 \text{ GeV}$$

 $r_V = 1.493 (0.014) (0.021)$ $r_2 = 0.775 (0.011) (0.011)$


Fraction of signal components

$S + \bar{K}^*(892)^0(\%)$
$5.62 \pm 0.14 \pm 0.13$
94.38
94.38
0
0

$S + \bar{K}^*(892)^0 \ \bar{K}^*(1410)^0 + D(\%)$
$5.69 \pm 0.16 \pm 0.15$
94.12
$94.41 \pm 0.15 \pm 0.20$
$0.16 \pm 0.08 \pm 0.14$
$0.19 \pm 0.09 \pm 0.09$


Phase of S-wave Component

- Agreement with K̄p interactions producing K̄π⁺ at small momentum transfer
- Additional negative sign between S and P wave compared with elastic $K\pi$ scattering

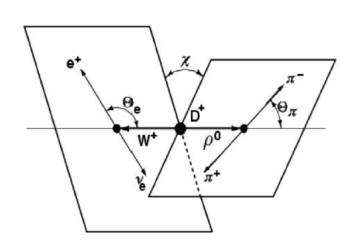
$$D^0/D^+ \rightarrow \rho e \nu$$

 $D^+ \rightarrow \omega e \nu$

- CLEOc , 818 pb⁻¹ , arXiv:1112.2884
- Improved precision on BF on both decays
- First measurement on Cabbio-suppressed P→V Form Factor measurement
- Combined with $D \rightarrow K^*e \nu$ and $B \rightarrow V I^+I^-$, to extract V_{ub} from $B \rightarrow \rho e \nu$
- Double tag technique, extract yields by fitting $U = E_{miss} P_{miss}$

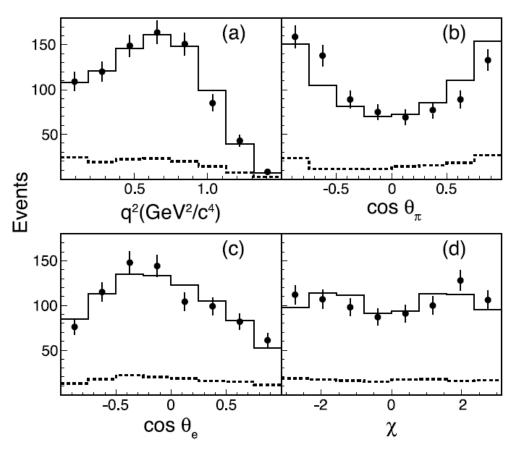
ρ/ω e v Branching Fraction Results

Decay Mode	ϵ (%)	$N_{\mathrm{tag, SL}}$	$\mathcal{B}_{\mathrm{SL}}$	$\mathcal{B}_{\mathrm{SL}}(\mathrm{prev})$	$\mathcal{B}_{\mathrm{SL}}(\mathrm{ISGW2})$	$\mathcal{B}_{\mathrm{SL}}(\mathrm{FK})$
				$1.94 \pm 0.39 \pm 0.13$	1.0	2.0
$D^+ \rightarrow \rho^0 e^+ \nu_e$	42.84 ± 0.03	447.4 ± 24.5	$2.17 \pm 0.12^{+0.12}_{-0.22}$	$2.1 \pm 0.4 \pm 0.1$	1.3	2.5
$D^+ o \omega e^+ \nu_e$	14.67 ± 0.03	128.5 ± 12.6	$1.82 \pm 0.18 \pm 0.07$	$1.6^{+0.7}_{-0.6} \pm 0.1$	1.3	2.5
	·	·		<u> </u>	·	


BF units 10⁻³, more consistent with FK predictions (PRD 72, 034029, 2005)

Results consistent with iso-spin invariance : (Iso-spin symmetry not expected to be exact due to ρ^0 - ω interference)

$$\frac{\Gamma(D^0 \to \rho^- e^+ \nu_e)}{2\Gamma(D^+ \to \rho^0 e^+ \nu_e)} = 1.03 \pm 0.09^{+0.08}_{-0.02}$$


ρ e v Form Factor Measurement

- Differential decay rate can be expressed in terms of 3 helicity amplitudes
- Helicity amplitudes are related to 2 axial form factors $A_1(q^2)$, $A_2(q^2)$, and 1 vector form factor $V(q^2)$
- Assume simple pole mode, and simultaneous fit to iso-spin conjugate $D^0/D^+ \rightarrow \rho e \nu$
- extract two FF ratios:

$$r_V = \frac{V(0)}{A_1(0)}$$
 and $r_2 = \frac{A_2(0)}{A_1(0)}$.

ρ e v Form Factor Result

Projection of the combined ρ and ρ^0 data

* Difference in $cos\theta_{\pi}$ might be due to s-wave interference

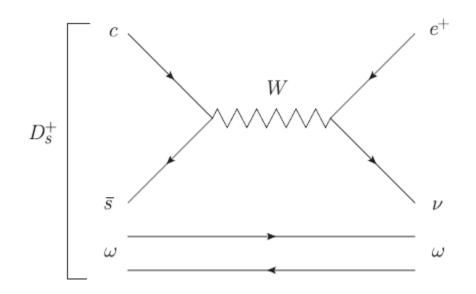
*

$$r_V = 1.48 \pm 0.15 \pm 0.05$$

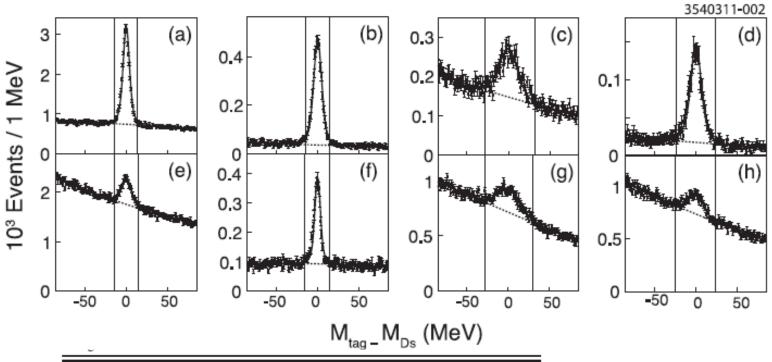
 $r_2 = 0.83 \pm 0.11 \pm 0.04$

*

Using PDG V_{cd}, D⁰ and D⁺ lifetime:


$$A_1(0) = 0.56 \pm 0.01^{+0.02}_{-0.03}$$

$$A_2(0) = 0.47 \pm 0.06 \pm 0.04$$

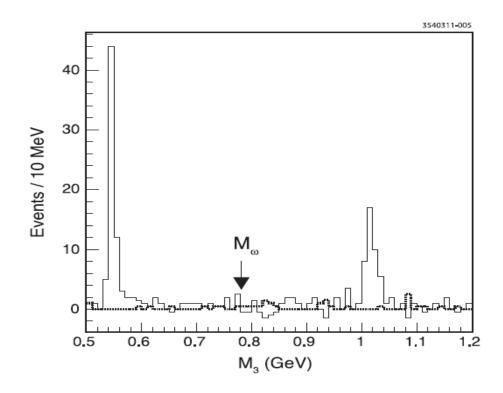

$$V(0) = 0.84 \pm 0.09^{+0.05}_{-0.06}$$

Search for $D_s^+ \rightarrow \omega e v$

- CLEOc, 4170 MeV, 586 pb⁻¹ (0.6x10⁶ D_sD_s^{*}), PRD 84, 012005 (2011)
- Probe four-quark content of D_s , BF > $2*10^{-4}$ unlikely due to ω - ϕ mixing, evidence for "weak annihilation". (see PRD 79, 074006, 2009)

Tag Modes

Modes	$N_{ m data}$	Low sideband	High sideband
$K_S^0K^-$	5828 ± 92	1 2 3 1	958
$K^{+}K^{-}\pi^{-}$	25990 ± 285	22 385	19 452
$K^{\star-}\bar{K}^{\star 0}$	2891 ± 100	2783	2 647
$\pi^+\pi^-\pi^-$	8152 ± 369	56 530	43 475
$\eta\pi^-$	3635 ± 160	5727	3 379
ηho^-	6877 ± 330	26879	14 658
$\pi^-\eta'(\eta\pi^+\pi^-)$	2344 ± 70	1 040	572
$\pi^- \eta'(\rho \gamma)$	4451 ± 337	42 412	25 476


Signal Selection and Results

Missing mass square measured for missing neutrino:

$$MM^2 = (E_b - E_{\text{tag}} - E_{\gamma} - E_s)^2 - (\mathbf{p}_b - \mathbf{p}_{\text{tag}} - \mathbf{p}_{\gamma} - \mathbf{p}_s)^2$$

 (E_s, P_s) : from $\omega(\pi\pi\pi^0)$ and electron

Require $-0.05 < MM^2 < 0.05 \text{ GeV2}$, fit mass of $\pi\pi\pi^0$

No signal found:

Upper limit:

$$\mathcal{B}(D_s^+ \to \omega e^+ \nu) < 0.20\%$$
 at 90% C.L.

Summary

- Semi-leptonic D decay analyses have been successful, FOCUS, BELLE, BarBar and CELOc
- 1/3 ψ (3770) data analyzed at BESIII for D \rightarrow K/ π e v, better precision expected
- More new results coming soon from BESIII