

Review of Results on Leptonic Decays of D⁺ and Ds⁺

G. Rong

(Institute of High Energy Physics, Beijing)

Charm 2012, 14-17 May, 2012, Hawaii, USA

OUTLINE

Charm role in test of SM > D⁺ leptonic decays **Ds**⁺ leptonic decays \succ Determination of $|V_{cd}| \& |V_{cs}|$ > Summary

Charm role

>D⁺ and D_S⁺ leptonic decays play an important role in understanding of the SM of particle physics

test the SM, and search for new physics beyond the SM.

Charm role

>Two charm decay constants $(f_{D(Ds)} \rightarrow f_{B(Bs)})$ affect

- $|V_{ub}|$ extracted from $B^+ \rightarrow l^+ v$
- $|V_{td}|$ extracted from Δm_d in B⁰B⁰ mixing
- $|V_{ts}|$ extracted from Δm_s in $B_s^0 B_s^0$ mixing

These are used toconstraint the unitary triangle

> Two decay branching fractions determine

- $|V_{cd}|$ extracted from $D^+ \rightarrow l^+ v$
- $|V_{cs}|$ extracted from $D_s^+ \rightarrow l^+ v$

> Precise measurements of f_{Ds} and f_{D} probe New Physics

Accumulating Evidence for Nonstandard Leptonic Deacsy of Ds Mesons

B.A. Dobressu and A.S. Kronfeld, PRL100, 241802 (2008)

R-parity violating supersymmetry, B_s mixing, and $Ds \rightarrow lv$.

A. Kundu and S. Nandi, PRD78, 015009 (2008)

Experiments near threshold Single tag events $\succ \psi(3770) \rightarrow D\overline{D}$ events MARK-III, BES-I, BES-II, CLEO-c tag and **BES-III** • D⁺D⁻ production in pair e^+ e⁻ \boldsymbol{D} • Measure absolute branching fraction for $D^+ \rightarrow \mu^+ \nu$ μ+ $M_{\rm miss}^2 = (E_{\rm beam} - E_{\mu^+})^2 - (-\vec{p}_{D_{tag}} - \vec{p}_{\mu^+})^2$ The neutrino is reconstructed with the missing energy and energy momentum momentum missing momentum of D_{tag} of μ^+ of μ^+ of the D⁺ meson. $B(D^+ \to \mu^+ \nu) = \frac{N_{D^+ \to \mu^+ \nu}}{N_{D^-_{\text{tran}}} \mathcal{E}_{D^+ \to \mu^+ \nu}}$

Experiments at higher energies

Fixed target experiments WA75, E653

 $e^+e^-
ightarrow D^*_S D^{\pm,0} K^{\pm,0} X, \ D^*_S
ightarrow \gamma D_S$, $X = n\pi(\gamma)$

D⁺ **leptonic decays**

Due to that this is a Cabbibo suppressed decay, measurements of this process were made at energies near threshold.

ψ (3770) Data samples in the world

MARK-III did not observe signal for this decay, they set an upper limit on decay constant $f_D < 290$ MeV

D+ leptonic decays at BES-I

22.3 pb⁻¹ **@ 4.03 GeV** PLB429, 188 (1998)

$$N_{D^+ \to \mu^+ \nu} = 1$$

One signal events observed

 $B(D^+ \to \mu^+ \nu) = (0.08^{+0.16+0.05}_{-0.05-0.02})\%$ $f_{D^+} = (300^{+180+80}_{-150-40}) \text{ MeV}$

D+ leptonic decays at BES-II

D+ leptonic decays at CLEO-c

 $B(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4} f_{D^+} = (222.6 \pm 16.7^{+2.8}_{-3.4}) \text{ MeV}_{12}$

D+ leptonic decays at CLEO-c

PHYSICAL REVIEW D 78, 052003 (2008)

818 pb⁻¹

CLEO

CESR

Precision measurement of $\mathcal{B}(D^+ \to \mu^+ \nu)$ and the pseudoscalar decay constant f_{D^+}

B. I. Eisenstein,¹ I. Karliner,¹ S. Mehrabyan,¹ N. Lowrey,¹ M. Selen,¹ E. J. White,¹ J. Wiss,¹ R. E. Mitchell,² M.R. Shepherd,² D. Besson,³ T. K. Pedlar,⁴ D. Cronin-Hennessy,⁵ K. Y. Gao,⁵ J. Hietala,⁵ Y. Kubota,⁵ T. Klein,⁵

D+ leptonic decays at CLEO-c

D⁺ leptonic decays at CLEO-c

Results:

$$N(D^+ \rightarrow \mu^+ \nu) = 149.7 \pm 12.0 \checkmark$$

The statistical error is a little bit smaller than square root of 149.7

$$N(D^+ \rightarrow \tau^+ \nu) = 25.8$$
 (fixed in fit)

N(D⁺ $\rightarrow \pi^0 \pi^+$) = 9.2 (fixed in fit)

37.4 BCK Events

Other background events : 2.4 ± 1.0

Mode	# of Events
Continuum \bar{x}_{0} +	0.8 ± 0.4
$K^0 \pi^+$ D^0 modes	$1.3 \pm 0.9 \\ 0.3 \pm 0.3$
Sum	2.4 ± 1.0

	Systematic errors (%)
Track finding	0.7
PID cut	1.0
MM ² width	0.2
Minimum ionization cut	1.0
Number of tags	0.6
Extra showers cut	0.4
Radiative corrections	1.0
Background	0.7
Total	2.2

 $Br(D^+ \to \mu^+ \nu) = (0.0382 \pm 0.0032 \pm 0.0009)\%$ $f_{D^+} = (205.8 \pm 8.5 \pm 2.5) \text{ MeV}$

D+ leptonic decays at BES-III

The detector is hermetic for neutral and charged particle with excellent resolution ,PID, and large coverage.

Background level for D⁺ leptonic decays at the BES-III is lower than that at the CELO-c

L=2.89 fb⁻¹ @ 3.773 GeV

Figure 2.4: The CLEO-c detector.

Advantage of the BES-III detector over CLEO-c is the MUC chamber with which BES-III can identify muon

L=818 pb⁻¹ @ 3.773 GeV

μ ID for D⁺ \rightarrow $\mu^+\nu_{\mu}$ at BES-III

Particle passage length in MUC VS momentum

- ➢ Muon can be well identified with the passage length of a particle going through the MUC.
- > If the passage length is greater than the one marked by the blue lines, the particle is assigned to be μ .

chamber

passage length of

particle going

through MUC

D+ leptonic decays at BES-III

BES-III D⁻ tags

Single tag channels

$D^+ \rightarrow \mu^+ \nu$ at BES-III

In the system recoiling against the singly tagged D⁻, BES-III selected the purely leptonic decay events for $D^+ \rightarrow \mu^+ \nu$

$D^+ \rightarrow \mu^+ \nu$ at BES-III

Event display for $D^+ \rightarrow \mu^+ \nu$ VS D^- tags

The muon can well be identified by MUC chamber

Each of the events is with a good μ hit in the μ chamber

Backgrounds for $D^+ \rightarrow \mu^+ \nu_{\mu}$

Estimated with Monte Carlo events

Source mode	Number of events
$D^+ \to K^0_L \pi^+$	7.9 ± 0.8
$D^+ \to \pi^+ \pi^0$	3.8 ± 0.5
$D^+ \to \tau^+ \nu_{\tau}$	6.9 ± 0.7
Other decays of D mesons	17.9 ± 1.1
$e^+e^- \to \gamma \psi(3686)$	0.2 ± 0.2
$e^+e^- \to \gamma J/\psi$	0.0 ± 0.0
$e^+e^- \rightarrow light \ hadron \ (continuum)$	8.2 ± 1.4
$e^+e^- \rightarrow \tau^+\tau^-$	1.9 ± 0.5
$\psi(3770) \to non - D\bar{D}$	0.9 ± 0.4
Total	47.7 ± 2.3

Backgrounds for $D^+ \rightarrow \mu^+ \nu_{\mu}$

The number of backgrounds is also estimated with data. By examining number of events with only one charged track in recoil side of the D⁻ tags, one can estimate number of background events as well.

 $N_b^{D \text{ Decays}} = 29.0 \pm 3.4$ $N_b^{\text{cmb}} = 19.9 \pm 3.4$ $N_b^{\text{tot}} = 48.9 \pm 4.8$

Br. & f_{D+} at BES-III

Results:

$N(D^+ \rightarrow \mu^+ \nu) = 377.3 \pm 20.6$

 $BF(D^+ \to \mu^+ \nu) = (3.74 \pm 0.21 \pm 0.06) \times 10^{-4}$

f_{D+} = (203.91±5.72±1.97) MeV

These are Preliminary !

Source	Systematic uncertainty [%]
Number of D^- tags $(N_{D_{tag}^-})$	0.6
Muon tracking	0.5
μ selection	0.3
$E_{\gamma_{max}}$ cut	0.7
Muon momentum cut	0.1
M^2_{miss} cut	0.5
Background estimation	0.7
Monte Carlo statistics	0.2
Radiative correction	1.0
Total	1.7

Average of Br. & f_D

Experiment	B(D ⁺ \rightarrow $\mu^+\nu_{\mu}$) (×10 ⁻⁴)	Average	
CLEO-c	(3.82±0.32±0.09)	(3.76±0.18)	
BES-III(PRLMNRY)	(3.74±0.21±0.06)		

Experiment	f _D (MeV)	Average	
CLEO-c	(205.8±8.5±2.5)	(204.5±5.0)	
BES-III(PRLMNRY)	(203.91±5.72±1.97)		

At present, the error is still dominated by statistics, needing more data to be taken at 3.773 GeV to reduce the error.

Comparison of $B(D^+ \rightarrow \mu^+ \nu) \& f_D$

D_S⁺ leptonic decays

$D_s^+ \rightarrow l^+ v$ at WA75 Experiment ixed target experiment PTP,89, 131(1993)

Fixed target experiment

A π^- beam is incident on an emulsion target and muon is required in the online trigger.

$D_{s}^{+} \rightarrow l^{+}v$ at CLEO II

$D_{s}^{+} \rightarrow l^{+}v \text{ at E653 Experiment}$ Fermilab fixed target experiment PLB,382, 299(1996)

A π^- beam is incident on an emulsion target and muon is required in the online trigger.

D_s + →l+ ν at BES-I PRL74, 4599 (1995) 22.3 pb⁻¹ @4.03 GeV

3 singly tagged D_s⁻ modes 94 singly tagged D_s⁻

3 events for Ds⁺ \rightarrow l⁺v $B(D_{S}^{+} \rightarrow \mu^{+}v) = (1.5^{+1.3+0.3}_{-0.6-0.2})\%$ $f_{D_{S}^{+}} = 430^{+150+40}_{-130-40}$ MeV

It is the first absolute measurement.

$D_s^+ \rightarrow \tau^+ \nu$ at L3 Experiment

LB396P, 327 (1997)

Ds⁺ $\rightarrow \tau^+ \nu$ selected from analysis of fragmentation and decay chain Z \rightarrow cc-bar, c-bar \rightarrow Ds^{*-} followed by Ds^{*-} $\rightarrow \gamma$ Ds⁻, Ds⁻ $\rightarrow \tau^- \nu$, $\tau^- \rightarrow l^- \nu \nu$

1.5x10⁶ Z \rightarrow qq-bar(γ) events 15.6 \pm 6.0 Ds⁺ \rightarrow $\tau^+\nu$ events

$$B(D_{S}^{+} \to \tau^{+}\nu) = (7.4 \pm 2.8 \pm 1.6 \pm 1.8)\%$$

$$f_{D_{S}^{+}} = 309 \pm 58 \pm 33 \pm 38 \text{ MeV}$$

$D_s^+ \rightarrow \tau^+ \nu$ at OPAL

PLB516 236 (2001)

The measurements were made based on reconstruction of decay sequence

$$e^+e^- \rightarrow Z \rightarrow c\bar{c} \rightarrow D_s^{\star-} X$$

$$\downarrow \rightarrow \gamma D_s^-$$

$$\downarrow \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau \ (\ell = e, \mu)$$
3.9x10⁶ Z \rightarrow qq-bar(γ) events
22.5 $\pm 6.9 \ Ds^+ \rightarrow \tau^+ \nu$ events
$$B(D_s^+ \rightarrow \tau^+ \nu) = (7.0 \pm 2.1 \pm 2.0)\%$$

$$f_{D_s^+} = 286 \pm 44 \pm 41 \ \text{MeV}$$

$$\vec{P}_{\mathrm{D}_{\mathrm{s}}} = -\sum_{i \neq \mathrm{lepton}} \vec{p}_i,$$

$$E_{\mathrm{D}_{\mathrm{s}}} = \sqrt{s} - \sum_{i \neq \mathrm{lepton}} E_i,$$

$$\sqrt{E_{\rm D_s}^2 - P_{\rm D_s}^2} = M_{\rm D_s}.$$

$D_{s}^{+} \rightarrow \tau^{+}\nu$ at ALEPH

PLB528, 1 (2002)

The measurements were made based on almost the same technique as used by L3 and OPAL. But the ALEPH reconstructed the $Ds^+ \rightarrow \mu^+ \nu$ decay in their invariant mass.

3.97x10⁶ hadronic Z decays

 $B(D_{S}^{+} \rightarrow \tau^{+}\nu) = (5.79 \pm 0.77 \pm 1.84)\%$ $B(D_{\rm S}^+ \to \mu^+ \nu) = (0.68 \pm 0.11 \pm 0.18)\%$ $f_{D_{\rm c}^{\pm}} = 285 \pm 19 \pm 40 {\rm MeV}$

D_s⁻ tags at CLEO-c

PRD79, 052001 (2009)

600 pb⁻¹ @ 4.170 GeV

9 singly tagged Ds⁻ modes

$D_s^+ \rightarrow l^+ \nu$ at CLEO-c

PRD79, 052001 (2009) $MM^{2} = (E_{CM} - E_{D_{s}^{-}} - E_{\gamma} - E_{\mu})^{2}$ $-(-\vec{p}_{CM} - \vec{p}_{D_{s}^{-}} - \vec{p}_{\gamma} - \vec{p}_{\mu})^{2}$

 $B(D_{S}^{+} \to \mu^{+}\nu)$ = (0.591±0.037±0.018)% $B(D_{S}^{+} \to \tau^{+}\nu)$ = (6.42±0.81±0.18)%

 $f_{D_s^+} = 263.3 \pm 8.2 \pm 3.9 \text{ MeV}$

were used

 $= 252.5 \pm 11.1 \pm 5.2$ MeV

Absolute measurement.

Signal for $Ds^+ \rightarrow \tau^+ \nu$

E_{extra} is the total energy of rest of the event measured in the electromagnetic calorimeter

CESF

CLEO

$D_s^+ \rightarrow \tau^+ \nu$ at CLEO-c

PRD80, 112004 (2009)

 $B(D_{S}^{+} \rightarrow \tau^{+}\nu)$ = (5.52 ± 0.57 ± 0.21)% $f_{D_{S}^{+}} = 257.8 \pm 13.3 \pm 5.2 \text{ MeV}$

 $N_{D_s}^{\text{REC}} = 32100 \pm 870(\text{stat}) \pm 1210(\text{syst}) \quad B(D_s^+ \to \mu^+ \nu) = [0.644 \pm 0.076 \pm 0.057]\%$ $N_{\mu\nu}^{\text{REC}} = 169 \pm 16(\text{stat}) \pm 8(\text{syst}) \qquad f_{D_s^+} = [275 \pm 16 \pm 12] \text{ MeV}$

$D_{s}^{+} \rightarrow l^{+}v$ at BaBar

e⁺e[−]→cc-bar events PRD82, 091103(R) (2010) $e^{+}e^{-} → D_{S}^{*}D^{\pm,0}K^{\pm,0}X, D_{S}^{*} → γD_{S}, X = nπ(γ)$ 521fb⁻¹ @ 10.6 GeV

 $B(D_{S}^{+} \to \tau^{+} \nu) = [4.91 \pm 0.47 \pm 0.54]\% \ (\tau^{+} \to \mu \nu \nu)$

Comparison of the measured Br.

43

Comparison of the measured f_{Ds}

Based on the measured branching factions of D_{S}^{+} leptonic decays (after radiative correction), and with inputs of D_{S}^{+} mass, lepton mass, D_{S}^{+} lifetime and $|V_{cs}|$ =0.97345 from CKMfiter, we calculate the f_{Ds} .

The measured f_{Ds} is 2.09 σ larger than the one expected by theories.

Comparison of f_{Ds}/f_{D}

Experiments

Weighted Average

- $f_{Ds} = (259.1 \pm 5.1) \text{ MeV}$
- $f_D = (204.5 \pm 5.0) \text{ MeV}$
- $f_{Ds}/f_D = (1.267 \pm 0.040)$

The measured ratio of the f_{Ds}/f_D is 2.7 σ larger than that predicted by theoretical calculations Theoretical calculations

Determination of $|V_{cs}|$ and $|V_{cd}|$

$$\Gamma(D_{(s)}^{+} \rightarrow l^{+} \upsilon_{l}) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{l}^{2} m_{D_{(s)}^{+}}^{2} (1 - \frac{m_{l}^{2}}{m_{D_{(s)}^{+}}^{2}})^{2}$$

 $f_{D(Ds)}$ can be well calculated (LQCD, ...)

 $\Gamma[D_{(s)}^{+} \rightarrow l^{+}v]$ can be well measured

One can extract CKM matrix elements $|V_{cs}|$ and $|V_{cd}|$

CKM matrix element |V_{cd}|

The $|V_{cd}|$ could be extracted with

$$\Gamma(D^+ \to l^+ \upsilon_l) = \frac{G_F^2 f_{D^+}^2}{8\pi} |V_{cd}|^2 m_l^2 m_{D^+} (1 - \frac{m_l^2}{m_{D^+}^2})^2$$

Inserting the quantities

$$\tau_{D+} = (1040\pm7) \text{ fs},$$

 $M_{D+} = (1896.60\pm0.16) \text{ MeV}$
 $M_{\mu+} = (105.658\pm0.000) \text{ MeV}$
 $f_{D+} = 207\pm4 \text{ MeV} \text{ (from LQCD)}$

yields

 $|V_{cd}| = (0.222 \pm 0.006 \pm 0.005) (BES-III Preliminary)$ From D⁺ $\rightarrow \mu^+ \nu$ leptonic decay

CKM matrix element |V_{cs}|

In the calculation we use $f_{Ds} = (247.5 \pm 2.2)$ MeV (the average of calculations)

$|\mathbf{V}_{cs}| \& |\mathbf{V}_{cd}|$

Comparison of |V_{cd}|

Discussions of $|V_{cd}| \& |V_{cs}|$

Carefully comparing these CKM matrix elements obtained by analyzing $D_{(s)}^{+}$ leptonic decays with these obtained by analyzing D meson semileptonic decays provide some useful information about New Physics

Effects of nonstandard leptonic decay of D_{S}^{+} would enhance D_{S}^{+} leptonic decay rate, resulting in a larger $|V_{cs}|$ than that obtained from D meson semileptonic decays

Accumulating Evidence for Nonstandard Leptonic Deacsy of Ds Mesons B.A. Dobressu and A.S. Kronfeld, PRL100, 241802 (2008)

If no nonstandard leptonic decay of D^+ , one would obtain the same values of $|V_{cd}|$ obtained from the D⁺ leptonic decays and D semileptonic decays.

Discussions of $|V_{cd}| \& |V_{cs}|$

 $|V_{cs}|_{CKMfiter} = (0.973 \pm 0.001)$ from CKMfiter $|V_{cs}|_{DS+\rightarrow l+\nu} = (1.019 \pm 0.020) \text{ from } D_{S}^{+} \rightarrow l^{+}\nu$

 $|V_{cs}|_{DS+\rightarrow l+\nu}$ is ~2.5 σ larger than $|V_{cs}|_{CKMfiter}$. Does this indicate New Physics effects?

 $|V_{cd}|_{CKMfiter} = (0.225 \pm 0.001)$ from CKMfiter $|V_{cd}|_{D+\to l+\nu} = (0.223 \pm 0.006) \text{ from } D^+ \to \mu^+ \nu$

 $|V_{cd}|_{D+ \rightarrow l+\nu}$ is consistent within error with $|V_{cd}|_{CKMfiter}$.

We need to examine D semileptonic decays to measure $|V_{cd}|$ $\& |V_{cs}|$ as well.

The BES-III can also determine $|V_{cs}|$ and $|V_{cd}|$ from D⁰ semileptonic decays. These results will come out soon.

In BES-III Collaboration, two analysis working groups (IHEP and CMU) have been working on extracting $|V_{cs}|$ and $|V_{cd}|$ (see C.L. Liu's talk), as well as some other physical quantities related to these D meson semileptonic decays.

These would be other important results for precise test of the SM and searching for NP.

Summary

- ➤ More than 25 years studies of D leptonic decays, over 530 D⁺→µ⁺v events have been accumulated. We begin to precisely study hadronic vertex and test LQCD
- BES-III is the most precise results for these to date:
- The world average of decay constants: $f_D = (204.5 \pm 5.0) \text{ MeV}, \quad f_{Ds} = (259.1 \pm 5.1) \text{ MeV}$
- ➤ World average f_{Ds}/f_D is 1.267 ± 0.040 , which is ~2.7σ larger than $f_{Ds}/f_D=1.156 \pm 0.008$ predicted by theories based on QCD
- Charm decay constants f_D and f_{Ds} can test LQCD, verified LQCD help extract |V_{td}| and |V_{ts}| from B_(s)B_(s) mixing experiments. These help more precisely test SM and search for New Physics. Charm do play an important role in test of SM of particle physics. 55

Br(D⁺→ $\mu^+\nu$)= (3.74±0.21±0.06)×10⁻⁴ f_{D+}=(203.91±5.72±1.97)MeV V_{cd}=(0.222±0.006±0.005)

The end!

Summary for $B(Ds^+ \rightarrow l^+v)$

These are taken from HFAG web page

Summary for f_{Ds+}

This plot is taken from HFAG web page

Decay rates & f_{D(Ds)}

Measurements of branching fractions probe the hadronic vertex

$$\Gamma_{\rm SM}(D_{(s)}^+ \to l^+ \nu) = \frac{G_F^2}{8\pi} m_l^2 m_{D_{(s)}} \left(1 - \frac{m_l^2}{m_{D_{(s)}}^2} \right) |V_{cd(s)}|^2 f_{D_{(s)}^+}$$

- Non-perturbative QCD effects are absorbed into $f_{D(Ds)},\,f_{D(Ds)}$ can be calculated or measured
- Measurements of $f_{D(Ds)}$ provide critical test of theory to calculate f_B, f_{Bs}

Improve determination of $|V_{td}|$ from B⁰B⁰ mixing experiment, needing f_{B+} as input

Similarly, measured f_{Ds+} tests LQCD calculated f_{Ds+} → better calculated f_{Bs+}

Improve determination of $|V_{ts}|$ from Bs⁰Bs⁰ mixing experiment, needing f_{Bs+} as input

Two decay constants $(f_{D(Ds)} \rightarrow f_{B(Bs)})$ affect

- $|V_{ub}|$ extracted from $B^+ \rightarrow l^+ v$
- $|V_{td}|$ extracted from Δm_d in B⁰B⁰ mixing
- $|V_{ts}|$ extracted from Δm_s in $B_s^{0}B_s^{0}$ mixing _

> Two decay branching fractions determine

- $|V_{cd}|$ extracted from $D^+ \rightarrow l^+ v$
- $|V_{cs}|$ extracted from $D_s^+ \rightarrow l^+ v$

These are used to constraint the unitary triangle

B_s⁰

New Physics in D_(s)⁺ leptonic decays Interference between W[±] and H[±] suppresses

 $D_s^+ \rightarrow l^+ \nu$, but it does not suppressed $D^+ \rightarrow l^+ \nu$

$$\Gamma(D_{(s)}^{+} \rightarrow l^{+}\nu) = \Gamma_{\rm SM}(D_{(s)}^{+} \rightarrow l^{+}\nu)r_{\rm s}$$
$$r_{\rm s} = \left[1 - m_{D_{(s)}^{+}}^{2}R^{2}\left(\frac{m_{d(s)}}{m_{d(s)} + m_{c}}\right)\right]^{2}$$

R=tan $\beta/m_{H_{,}}$ where tan β is the ratio of vacuum expectation values of the two Higgs doublets

J.L. Hewett, hep-ph/9505246; A.G. Akeroyd, hep-ph/0308260

9.76) from SM

If tanβ is large, it is possible to observe deviation from lepton universality in these decays

 $\Gamma(D_{(s)}^+ \to \tau^+ \nu) = \frac{m_{\tau^+}^2 (1 - m_{\tau^+}^2 / m_{D_{(s)}}^2)^2}{2342(1993)}$ Wei-Shu Hou, PRD48, 2342(1993)

 $\Gamma(D_{(s)}^+ \to \tau^+ \nu) = \frac{m_{\tau^+}^2 (1 - m_{\tau^+}^2 / m_{D_{(s)}}^2)^2}{2}$ Ratio expected to be

$$\frac{\Gamma(D_{(s)}^{+} \to \tau^{+} v)}{\Gamma(D_{(s)}^{+} \to \mu^{+} v)} = \frac{m_{\tau^{+}} (1 - m_{\tau^{+}}^{2} / m_{D_{(s)}}^{2})^{2}}{m_{\mu^{+}}^{2} (1 - m_{\mu^{+}}^{2} / m_{D_{(s)}}^{2})^{2}}$$