

Studies of radiative X(3872) decays at Belle

Charm 2012 Vishal Bhardwaj, Nara (on behalf of Belle)

Outline

- Charmonium at Belle
- Radiative decays of X(3872).
- Search for X(3872)^{C-} in $\chi_{c1,c2}\gamma$
- First evidence of Ψ_2
- Result and Conclusion

Charmonium spectrum

Contribution to new states:

 $η_c(2S)$, $Ψ_2$, X(3872), X(3915), Z(3930), X(3940), Y(3940), Z₁(4050)⁺, Z₂(4250)⁺, Y(4260), Z(4430)⁺, Y(4660), ...

business.

$$\begin{array}{c} 36\\ 58\\ 10\\ 10\\ 5\\ 0\\ 3.75\\ 3.8\\ 3.85\\ M_{J/\psi\gamma} (GeV/c^2) \end{array}$$

* combining $B^+ \rightarrow X K^+ \& B^0 \rightarrow X K^0$

However, Belle didn't see any signal in X(3872) $\rightarrow \Psi'\gamma$

$$\frac{BR(X \to \psi' \gamma)}{BR(X \to J/\psi \gamma)} < 2.1 \ (@90\% \ CL)$$

No Belle evidence for X(3872) $\rightarrow \Psi' \gamma$

Search for X(3872)^{c-} in $\chi_{c1,c2}\gamma$

- Earlier search for tetraquark partner (charged X(3872)), no signal was seen.
 Belle, PRD 85,052004 (2011)
- However, many tetraquark models predict X(3872)⁺ to be broad and non-observed yet due to low statistics (?).
 K. Terasaki, Prog. Theor. Phys. 127, 577-582 (2012)
- ***** X(3872) C-even parity prohibit it to decay into $\chi_{c1,c2}\gamma$.
- ***** If X(3872) is tetraquark than its' C-odd partner can decay into $\chi_{c1,c2}$ γ.
- > In Belle previous searches (with less data), no signal was seen and

With 5 x more data either we can observe or provide much tighter constraint to C-odd partner of X(3872)

Search for cc (-like) states

- Many conventional states still awaiting confirmation and B decays provide a gateway to study them.
- Theory predicts ³D₂ cc̄ state to lie around ~3810-3840 MeV/c² mass and should be narrow.

Partial width, $\Gamma(\psi_2 \rightarrow \chi_{c1} \gamma) = 260$ keV.

☆ Along with this, there should be ³D₃ cc̄ state lying around ~ 3830-3880 MeV/c² mass and will decay into χ_{c2}γ. Partial width, Γ(ψ₃→χ_{c2}γ) = 286 keV.
S Codfrey & N logur BPD 32, 189 (198)

S. Godfrey & N. Isgur, PRD 32, 189 (1985) E. Eichten et al., PRL 89,162002 (2002), PRD 69, 094019 (2004)

✓ With current statistics, we expect to find some hint of Ψ_2 and Ψ_3 .

Along with this, we may also find some other C-odd cc

 ike
 resonance.

Search for new exotic state in $\chi_{c1}\gamma$ and $\chi_{c2}\gamma$ by scanning $M_{\chi c1,c2\gamma}$ (mass distribution) for narrow peak.

Analysis procedure

To identify background, large sample of $B \rightarrow J/\Psi X$ (final state, here X can be anything) MC is used.

$B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$

Analysis procedure

Reconstruct B[±] (of interest)

To reduce background

- $\succ \pi^0$ veto
- $\succ \chi_{c1,c2}' \gamma$ veto
- -28 MeV < ΔE < 30 MeV

- $\label{eq:linear} \succ \ \text{2D UML fit to } M_{\chi c1,c2\gamma} \ \& \ M_{bc} \ \text{extract} \\ \text{signal yield}$
- If some new resonance, it will become visible in M_{χc1,c2γ}, in M_{bc} signal region.

711 *fb*⁻¹

 $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$

Signal extraction in $M_{\chi c1 \nu}$ $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$ 2D UML fit Background parameterize using large $B \rightarrow J/\Psi X MC$ sample 14000 7200 12000 **5**000 $\stackrel{-}{_} B^+ \rightarrow \Psi' (\rightarrow \chi_{c1} \gamma) K^+$ $\stackrel{-}{_} B^+ \rightarrow \Psi' (\rightarrow \chi_{c1} \gamma) K^+$ 8000 MC Peaking background **É**000 $(B \rightarrow \Psi K^*, \chi_{c1} K^*)$ $\rightarrow \Psi_{2} (\rightarrow \chi_{21} \gamma) K$ ம் 6000 ΨΚπ, χ_{c1}Κπ, . .) 8000 Combinatorial 5000 6000 4000 MC (3823) 3000 4000 2000 2000 1000 3.65 5.28 5.2 M_{bc} (GeV/c² Fit parameterize

- Sum of two Gaussian (convoluted with Breit-Wigner)* is used to fit Ψ₂ (from MC).
- ★ Tail part Gaussian same as Ψ' (tested on MC study).
- ↔ M_{bc} PDF same as Ψ' (from MC study).
- ♦ $Ψ_2$ width is fix to zero, resolution is estimated from Ψ' peak (and scaled from MC*).

For fit bias, 2000 toys and no significant bias is observed.

Maximum bias of 2% estimated and included in the systematics.

*Estimated from signal MC (for different width)

What is this peak?

TABLE III: Charmonium spectrum, including the influence of open-charm channels. All masses are in MeV. The penultimate column holds an estimate of the spin splitting due to tensor and spin-orbit forces in a single-channel potential model. The last column gives the spin splitting induced by communication with open-charm states, for an initially unsplit multiplet.

State	Mass	Centroid	Splitting (Potential)	$\begin{array}{c} { m Splitting} \\ { m (Induced)} \end{array}$
1^1S_0 1^3S_1	2979.9^a 3096.9^a	3067.6^{b}	$-90.5 \\ +30.2$	$^{+2.8}_{-0.9}$
$1^{3}P_{0}$ $1^{3}P_{1}$ $1^{1}P_{1}$ $1^{3}P_{2}$	$3 415.3^a \\ 3 510.5^a \\ 3 525.3 \\ 3 556.2^a$	3525.3°	$-114.9^{e} \\ -11.6^{e} \\ +1.5^{e} \\ -31.9^{e}$	$+5.9 \\ -2.0 \\ +0.5 \\ -0.3$
$\frac{2^1\mathrm{S}_0}{2^3\mathrm{S}_1}$	$\frac{3}{3}\frac{637.7^a}{686.0^a}$	3673.9^{b}	-50.4 + 16.8	$^{+15.7}_{-5.2}$
$1^{3}D_{1}$ $1^{3}D_{2}$ $1^{1}D_{2}$ $1^{3}D_{3}$	3769.9^{ab} 3830.6 3838.0 3868.3	$(3815)^d$	$-40\\0\\+20$	$-39.9 \\ -2.7 \\ +4.2 \\ +19.0$
$2^{3}P_{0}$ $2^{3}P_{1}$ $2^{1}P_{1}$ $2^{3}P_{2}$	$3 931.9 \\ 4 007.5 \\ 3 968.0 \\ 3 966.5$	3968^d	$-90 \\ -8 \\ 0 \\ +25$	$^{+10}_{+28.4}_{-11.9}_{-33.1}$

^aObserved mass, from *Review of Particle Physics*, Ref. [13].

^bInputs to potential determination. ^cObserved $1^{3}P_{J}$ centroid.

 d Computed.

^eRequired to reproduce observed masses.

$^{3}D_{3}$ doesn't have E1 transition to $\chi_{c1}\gamma$

S. Godfrey & N. Isgur, PRD 32, 189 (1985) E. Eichten et al., PRL 89,162002 (2002), PRD 69, 094019 (2004) ³D₂ mass is quite near and the observed peak has not been seen in $D\overline{D}$ (³D₂ $\rightarrow D\overline{D}$ is expected).

X(3823) seems to be the missing Ψ_2 from the charmonium spectrum .

Ψ,

 $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$

X(3872)^{C-}

X(3872) yield : -0.9±5.1 events

No signal is observed in the X(3872) region.

B.R.(B[±]→X(3872)K[±]) x B.R.(X(3872)→ $\chi_{c1}\gamma$) < 2.0 x 10⁻⁶ (@90% CL)

$$\frac{\Gamma(X3872 \rightarrow \chi_{c1}\gamma)}{\Gamma(X3872 \rightarrow J/\Psi\pi\pi)} < 0.26$$

Belle, PRD 85,052004 (R) (2011)

* Recent Belle result used for BR(B \rightarrow X3872K)*BR(X3872 \rightarrow J/ $\Psi\pi^{+}\pi^{-}$.

Fit results preliminary

$B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$	Yield	BR (10 ⁻⁴)		
		Belle	World Average	
$\Psi' \rightarrow \chi_{c1} \gamma$	193±19	$7.74^{+0.77}_{-0.74}(stat)^{+0.87}_{-0.83}(syst)$	6.39 ± 0.33	

 $\mathcal{BR}(B^+ \rightarrow \Psi' K^+)$ consistent with world average

$B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$	Yield	$\mathscr{BR}(B^+ \rightarrow X K^+)$. $\mathscr{BR}(X \rightarrow \chi_{c1} \gamma)$ (10 ⁻⁶)
$\Psi_2 \rightarrow \chi_{c1} \gamma$	33.2±9.1	$9.70^{+2.84}_{-2.51}(stat)^{+1.06}_{-1.03}(syst)$
X(3872)→χ _{c1} γ	-0.9±5.1	< 2.0(@90% CL)

First evidence of Ψ_2 with 4.2 σ significance by Belle.

$$\frac{\Gamma(X3872 \rightarrow \chi_{c1}\gamma)}{\Gamma(X3872 \rightarrow J/\Psi\pi\pi)} < 0.26$$

fb⁻¹

- Fit parameterize
 - ***** Sum of two Gaussian is used to fit Ψ' and Ψ_2 shape estimated (from MC).
 - ♦ Data/MC correction estimated from $B^{\pm} \rightarrow \Psi'(\rightarrow \chi_{c1} \gamma) K^{\pm}$.
 - 2000 toys were used to test fitter and no significant bias is observed.

 $\frac{\Gamma(\Psi_2 \rightarrow \chi_{c2} \gamma)}{\Gamma(\Psi_2 \rightarrow \chi_{c1} \gamma)} < 0.48 \text{ , Expected } \sim 0.2 \text{ (model dependent)}$

U.L. (@ 90% CL)

E. J. Eichten et al, PRL 89, 1620021(2002)

Result & conclusion

First evidence of narrow state at 3823 MeV in $\chi_{c1}\gamma$.

- Most probable the missing $\Psi_2(c\bar{c})$ state.
- Useful for quarkonium model.
- Also, useful in understanding other resonances.

No narrow state evident in $\chi_{c2}\gamma$, at current statistics.

 $\Psi_2 \rightarrow \chi_{c2} \gamma$ UL consistent with the expectation.

- X(3872) as tetraquark
- No signal is seen in C-odd partner of X(3872) (tetraquark interpretation) in $\chi_{c1}\gamma$ and $\chi_{c2}\gamma$.
- More stringent upper limits are provided.

Solution of Ψ_2 at other experiments. Interesting to compare it with predicted $\mathcal{BR}(\Psi_2 \rightarrow J/\Psi \pi \pi)$, can be measured at LHC.

Thank you

Reconstruction $E_{v} > 100 \text{ MeV}$ $\chi_{c1,c2}$ reconstruct from J/ $\psi\gamma$ E_v> 200 MeV $p_{J/w} < 2.0 \text{ GeV/c}$ X Koppenberg's π^0 veto < 0.6 (to reject γ from π^0) 3.47 GeV/c²< $M_{J/\psi\gamma}$ < 3.54 GeV/c² for χ_{c1} 3.54 GeV/c² < $M_{J/dy \gamma}$ < 3.58 GeV/c² for χ_{c2} Mass constrained and vertex fit in order to improve resolution γ is rejected if it is combined with another γ and has M_w within [117, 153] MeV/c² (π^0 veto) γ is veto, if it is making best $\chi_{c1,c2}$ in that event. $R_{\kappa} > 0.6$

-28 MeV < ΔE < 30 MeV as ΔE window

For multiple candidate, ΔE closest to 0.

E_γ is scaled in order to improve the resolution of M_{χc1γ} (ΔE=0).
 Extract signal yield using fit to M_{χc1γ} & M_{bc} (2D UML fit).

$-198 < \Delta E < -140 \text{ MeV}$ $\Delta E \text{ sideband}$ 2 x signal region $100 < \Delta E < 158 \text{ MeV}$

★ No unexpected peaking background is seen. ★ $B \rightarrow J/\psi$ X MC agrees quite well with data.

TABLE I: Thresholds for decay into open charm.

Channel	Threshold Energy (MeV)	
$D^0 ar{D}^0$	3729.4	
D^+D^-	3738.8	
$D^0 \bar{D}^{*0}$ or $D^{*0} \bar{D}^0$	3871.5	
$D^{\pm}D^{*\mp}$	3879.5	
$D_s^+ D_s^-$	3936.2	
$D^{*0}\bar{D}^{*0}$	4013.6	
$D^{*+}D^{*-}$	4020.2	
$D_{s}^{+}\bar{D}_{s}^{*-}$ or $D_{s}^{*+}\bar{D}_{s}^{-}$	4080.0	
$D_{s}^{*+}D_{s}^{*-}$	4223.8	

TABLE V: Calculated and observed rates for E1 radiative transitions among charmonium levels. *Values in italics* result if the influence of open-charm channels is not included.

Transition	Partial width (keV)	
$(\gamma \text{ energy in MeV})$	Computed	Measured
$1^3 D_1(3770) \rightarrow \chi_{c2} \gamma(208)$	$3.2 \rightarrow 3.9$	
$1^3 D_1(3770) \rightarrow \chi_{c1} \gamma(251)$	18.	$3 \rightarrow 59$
$1^{3}D_{1}(3770) \rightarrow \chi_{c0} \gamma(338)$	254	$\rightarrow 225$
$1^{3}D_{1}(3815) \rightarrow \chi_{c2} \gamma(250)$	5.5	$5 \rightarrow 6.8$
$1^{3}D_{1}(3815) \rightarrow \chi_{c1} \gamma(293)$	128	$3 \rightarrow 120$
$1^{3}D_{1}(3815) \to \chi_{c0} \gamma(379)$	344	$\rightarrow 371$
$1^{3}D_{2}(3815) \rightarrow \chi_{c2} \gamma(251)$	50	$\theta \to 40$
$1^{3}D_{2}(3815) \rightarrow \chi_{c1}\gamma(293)$	230	$\theta \rightarrow 191$
$1^3 D_2(3831) \rightarrow \chi_{c2} \gamma(266)$	59	$0 \rightarrow 45$
$1^{3}D_{2}(3831) \rightarrow \chi_{c1} \gamma(308)$	264	$\rightarrow 212$
$1^{3}D_{2}(3872) \rightarrow \chi_{c2} \gamma(303)$	85	$45 \rightarrow 45$
$1^{3}D_{2}(3872) \rightarrow \chi_{c1}\gamma(344)$	362	$2 \rightarrow 207$
$1^{3}D_{3}(3815) \rightarrow \chi_{c2} \gamma(251)$	199	$0 \rightarrow 179$
$1^{3}D_{3}(3868) \rightarrow \chi_{c2} \gamma(303)$	329	$\theta \rightarrow 286$
$1^{3}D_{3}(3872) \rightarrow \chi_{c2} \gamma(304)$	341	$\rightarrow 299$

TABLE III: Charmonium spectrum, including the influence of open-charm channels. All masses are in MeV. The penultimate column holds an estimate of the spin splitting due to tensor and spin-orbit forces in a single-channel potential model. The last column gives the spin splitting induced by communication with open-charm states, for an initially unsplit multiplet.

State	Mass	Centroid	Splitting (Potential)	Splitting (Induced)
1^1S_0	2979.9^{a}	3067.6^{b}	-90.5	+2.8
1^3S_1	3096.9^{a}		+30.2	<u>-0.9</u>
$1^3\mathrm{Po}$	3415.3^{a}		-114.9^{e}	+5.9
$1^{3}P_{1}$	3510.5^{a}	a For ac	-11.6^{e}	-2.0
$1^1 P_1$	3 5 2 5 . 3	3 525.3	$+1.5^{e}$	+0.5
$1^3 P_2$	3556.2^{a}		-31.9^{e}	-0.3
2^1S_0	3 637.7ª	0.0 5 0.0b	-50.4	+15.7
2^3S_1	3686.0^{a}	3 673.9°	+16.8	-5.2
$1^{3}D_{1}$	3 769.9 ^{ab}		-40	-39.9
1^3D_2	3830.6	$(3815)^d$	0	-2.7
1^1D_2	3838.0		0	+4.2
1^3D_3	3868.3		+20	+19.0
$2^{3}P_{0}$	3931.9	3968^d	-90	+10
$2^{3}P_{1}$	4007.5		-8	+28.4
$2^1 P_1$	3968.0		0	-11.9
$2^3 P_2$	3966.5		+25	-33.1

S. Godfrey & N. Isgur, PRD 32, 189 (1985) E. Eichten et al., PRL 89,162002 (2002), 26 PRD 69, 094019 (2004)

E705 Collaboration

Belle Mass 3.823 GeV/c²

Looking at ψ' , here 3.836 peaks looks prominent ???

A search has been made in 300 GeV/ $c \pi^{\pm}$ - and proton-Li interactions for production of states that decay into J/ψ or ψ' plus one or two pions. A 2.5 σ enhancement in the $J/\psi \pi^0$ spectrum, possibly the recently reported 1P_1 state of charmonium, is observed at a mass of 3.527 GeV/ c^2 . In the J/ψ plus two pion mass spectrum, we report, together with the expected $\psi' \rightarrow J/\psi \pi^+\pi^-$, the tentative observation of a structure at a mass of 3.836 GeV/ c^2 . No enhancements are seen in the $J/\psi \pi^{\pm}\pi^{\pm}$, $J/\psi \pi^{\pm}\pi^0$, $J/\psi \pi^{\pm}$, or $\psi' \pi^{\pm}$ mass spectra.

PhysRevD.50.4258

FIG. 6. $J/\psi \pi^+\pi^-$ mass spectra from 300 GeV/ $c\pi^\pm$ Li interactions; (b) $J/\psi \pi^+\pi^-$ mass spectrum from 300 GeV/c proton Li interactions.

Interestingly Ψ_2 is not seen in J/ $\Psi\pi\pi$ in other experiments.

Some properties of X(3872)

Mass near D⁰ and \overline{D}^{*0} threshold \rightarrow 3871.73± 0.21 MeV/c² _{PDG} How is it related to D⁰ \overline{D}^{*0} ? D⁰ \overline{D}^{*0} molecule or something else ? X(3872) much narrower width (Γ < 1.2MeV @ 90% CL) than other charmonium states above D D threshold. Observed in D⁰ \overline{D}^{*0} mode. PRL 97,162002 (2006), PRD 77,011102 (2008) and PRD 81, 031103 (2010) 29

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/

General purpose detector, build to test Standard Model mechanism for CP violation in B decays to charmonium $(B^0 \rightarrow J/\Psi, \Psi', \chi_{c1} K^0)$. arXiv:1201.4643v1 Contribution to charmonium (-like) states: $\eta_c(2S), X(3872), Y(3940), Z(3930), X(3940), X(3915), Y(4260),$ $Y(4660), Z(4430)^+, Z_1(4050)^+, Z_2(4250)^+ \dots$ ³⁰

Update on properties of X(3872)

With full

data sample

1++

X(3872)⁺ existence ?

Tetraquark model predicts the existence of isospin triplet : X(3872)⁺

Few tetraquark models predict X(3872)⁺ to be broad, non-observed yet because of low statistics (?). K. Terasaki, arxiV : 1107.5868v2

If X(3872) is tetraquark, than X(3872) has C-odd partner which can dominantly decay into

 $\checkmark X(3872)^{C} \rightarrow \chi_{c1} \gamma$

With full

data sample

Belle Babar comparison

- BaBar used 1d UML fit to m_{miss} and use $_{\rm s}{\rm Plot}$ to project signal in $\,m_{\chi}$
- We use 1d UML fit to $M_{\psi'\gamma}$ to extract yield

X(3872) other radiative decay

Angular analysis carried by Belle ^{Belle, PRD 85,052004 (2011)} and CDF^{PRL98, 132002 (2007)} suggest , X(3872)'s J^{PC} to be 1^{++} or 2^{-+} .

