More Theory of XYZ States

Eric Braaten Ohio State University

Theory of XYZ States

Introduction: see previous talks by

- W. Gradl
- L. Pillonen
- A.A. Alves Jr
- A. Polosa

- dependence on QCD parameters
- dependence on heavy quark mass
- recent results from Lattice QCD
- Born-Oppenheimer expansion?

Understanding the nature of the XYZ states

requires understanding how their properties depend on the parameters of QCD:

QCD coupling constant: α_s light quark masses: m_u, m_d, m_s (or m_{π}, m_K) heavy quark masses: M_c, M_b (or M_D, M_B) number of colors? XYZ states are particularly sensitive to pion mass: m_{π} heavy quark mass: M_Q

- Experiments can measure their properties only at $m_{\pi} = 140 \text{ MeV}$ $M_Q = M_c \text{ and } M_b$
 - Lattice QCD will calculate their properties only at $M_Q = M_c$ and M_b and as function of m_{π} in the range $140 \text{ MeV} < m_{\pi} < 500 \text{ MeV}$

Challenge: Use experiment and lattice QCD to understand XYZ states

As a QCD parameter is varied, masses of different hadrons change at different rates.

- The masses of two hadrons can cross.
- The mass of a hadron can cross thresholds for other hadrons.

The properties of a hadron can depend dramatically on the parameter near the crossing.

How do they behave near the crossing?

What happens near the crossing?

Feshbach resonance!

If coupling of A to B+C is P-wave, D-wave, ... properties of A are modified only very close to crossing

Suppose mass of hadron A crosses threshold for hadrons B+C as a QCD parameter changes

S-wave Feshbach resonance

If coupling of A to B+C is <u>S-wave</u>, A has <u>universal</u> properties near the crossing

Suppose an ordinary bound state of B+C crosses threshold for B+C

B+C molecule disappears at the threshold

Suppose an ordinary S-wave bound state of B+C crosses threshold for B+C

S-wave B+C molecule disappears at the threshold but it has universal properties near the crossing S-wave Feshbach resonance and ordinary S-wave bound state have same universal behavior near crossing

In universal region,

A is a loosely-bound molecule

with large mean separation (r)

determined by its small binding energy E_b : $\langle r \rangle^2 = I/(4 \ \mu \ E_b)$

What is the X(3872)?

Universal properties of an S-wave near-threshold resonance with a>0

- a) binding energy: $E_X = \hbar^2/(2\mu a^2)$
- b) rms separation: $r_X = a/\sqrt{2}$

Apply to X(3872):

 $E_X = 0.11 \pm 0.33 \text{ MeV}$

 $J^{PC} = I^{++} \implies r_X = I 0^{+\infty} -5 \text{ fm}$

(if $J^{PC} = I^{++}$) X(3872) has the same universal properties whether it is a $\chi_{c1}(2P)$ Feshbach resonance or an ordinary D^*D molecule

What is the nature of the X(3872)?

How does it depend on QCD parameters outside universal region?

 For a hadron to be a constituent in a hadronic molecule, its width must be smaller than its binding energy.
 ρ meson (Γ=150 MeV) can never be

a constituent in a hadronic molecule

 For a threshold to dramatically affect properties of hadrons crossing it, the hadrons forming the threshold must be narrow

nothing interesting can happen near $\rho~J/\psi$ threshold

Narrow Hadrons: $\Gamma < 20 \text{ MeV}$

 $\frac{\text{light mesons}}{\pi \text{ K } \eta \eta'}$ ω? (Γ = 8.5 MeV) φ? (Γ = 4.3 MeV)

 $\frac{\text{light baryons}}{N \ \land \ \Sigma \ \Xi \ \Omega^{-}}$

<u>charm mesons</u> D D* D_s D_s* D_{s0} D_{s1}* D_{s1}' 28 narrow charm-charm thresholds! Dependence on heavy quark mass Heavy-light meson mass: expansion in I/M_Q $M_H = M_Q + a + b/M_Q + ...$ Quarkonium mass: expansion in $v_Q^2 \sim I/M_Q$

 $M_{nLSJ} = 2 M_Q + A_{nL} M_Q v_Q^2 + B_{nLSJ} M_Q v_Q^4 + \dots$

Dependence on heavy quark mass

 subtract H+H threshold to make it horizontal
 use I/M_Q as parameter instead of M_Q exploits heavy-quark spin symmetry: spin splittings → 0 as M_Q → ∞

Scattering thresholds for pairs of heavy-light mesons (relative to HH)

Quarkonium masses relative to threshold for a heavy-light meson pair

Quarkonium masses and Scattering thresholds relative to threshold for a heavy-light meson pair

resonances

Lattice Gauge Theory QCD calculations from 1st principles

QCD parameters: α_s m_u, m_d, m_s (or m_{π}, m_K) M_c, M_b (or M_D, M_B)

space-time lattice spacing: *a* volume: L³xT

calculate masses! radiative transitions decays into 2 nonrelativistic hadrons?

Lattice QCD

quantitative calculations for heavy hadrons require ...

• light quarks: dynamical u, d, s

required for correct running of α_s even if there are no constituent light quarks

- heavy quarks: relativistic OR nonrelativistic with successive improvement terms
- several pion masses to extrapolate to $m_{\pi} = 140 \text{ MeV}$
- several lattice spacings to extrapolate to $a \rightarrow 0$
- several lattice sizes to extrapolate to $L \rightarrow \infty$

recent progress on cc mesons above DD threshold

exotic quantum numbers! charmonium hybrids! charm meson molecules?

• Regensburg Nov 2011 Bali, Collins, and Ehmann

• Trinity/JLab/Old Dominion April 2012 Liu, Moir, Peardon, Ryan, Thomas, Vilaseca, Dudek, Edwards, Joo, Richards

Regensburg group

- light quarks: dynamical u, d but no s incorrect running of α_s
- heavy quarks: relativistic

- 3 pion masses: 1010 MeV, 400 MeV, 280 MeV
- only I lattice spacing: no extrapolation to $a \rightarrow 0$
- only I lattice size: no extrapolation to $L \rightarrow \infty$

Regensburg group

- ground state and Ist excited state
 for all J^{PC} with J≤3 except 0⁻⁻⁻, 0⁻⁺, 3⁻⁺ (exotic)
- lightest exotics: I⁻⁺ 4150 MeV 2⁺⁻ 4610 MeV
- molecules

 $0^{-+}, I^{--}: NO$ $I^{++}: YES!?$ binding energy 88 MeV (if $m_{\pi} = 280 \text{ MeV}$)

Trinity/JLab/Old Dominion group April 2012

- light quarks: dynamical *u*, *d*, s correct running of α_s !
- heavy quarks: relativistic

- only I pion mass: $m_{\pi} = 400 \text{ MeV}$
- only I lattice spacing: no extrapolation to $a \rightarrow 0$
- only 2 lattice sizes

Trinity/JLab/Old Dominion group

- all J^{PC} with J≤4 except 0⁻⁻⁻, 3⁻⁺, 4⁺⁻ (exotic) ground state and up to 5 excited states!
- exotics: I⁻⁺, 0⁺⁻, 2⁺⁻
- 6 complete charmonium multiplets: IS, IP, 2S, ID, 2P, IF, 3S
- 2 complete charmonium hybrid multiplets:

 I⁻⁻
 (0,1,2)⁻⁺
 4 states
 (0,1,2)⁺⁺
 (0,1,1,1,2,2,3)⁺⁻
- I⁻⁻ charmonium hybrid candidate for Y(4260)

Heavy quark limit

Born-Oppenheimer Approximation Juge, Kuti, Morningstar 1999

 $M_Q >> \Lambda_{QCD}$

Gluon fields respond quickly, minimizing their energy, in response to the slow motion of the heavy quarks

Step I: Calculate heavy quark potential

Step 2: Solve Schroedinger equation

Born-Oppenheimer Approximation

Step I: Calculate heavy quark potential

V(r) = ground-state energy of gluon field in presence of static Q and Q separated by distance r in z direction

gluon quantum numbers: $J_z^{(gluon)}$, CP_z

can use Lattice QCD Juge, Kuti, Morningstar 1999

Step 2: Solve <u>Schroedinger equation</u>

Born-Oppenheimer Approximation

Heavy quark limit

Can Born-Oppenheimer Approximation be extended to Born-Oppenheimer Expansion?

Step Ia: Calculate adiabatic <u>heavy quark potentials</u> gluon and light quark fields in presence of static Q and Q separated by distance r in z direction

V_n(r) = energy of n'th state (ground state and excited states)

Step Ib: Calculate nonadiabatic <u>transition potentials</u> ?? W_{nm}(r): transition of gluon, light quark fields between energy levels n and m

Step 2: Solve Schroedinger equation

Born-Oppenheimer Approximation

Step Ia: Calculate <u>heavy quark potentials</u> many potentials with avoided crossings

Step Ib: Calculate transition potentials ??

Step 2: Solve <u>Schroedinger equation</u> many-coupled-channel problem for each J^{PC}

Summary

Lattice gauge theory will soon be capable of definitive calculations of some properties of cc mesons above DD threshold: masses! radiative transitions decays into 2 nonrelativistic hadrons?

- \Rightarrow strong constraints on phenomenological models
- \Rightarrow useful inputs for effective theories?

Will this be enough to understand XYZ states?

