New results on X, Y, Z states at BABAR

Wolfgang Gradl representing the BABAR collaboration

Institut für Kernphysik

17th May 2012 Charm 2012 Honolulu, Hawai'i

Motivation

Everything not forbidden is compulsory '...while mesons are made out of $(q\overline{q})$, $(qq\overline{q}\overline{q})$, etc.'

Gell-Mann, Phys. Lett. 8, 214 (1964)

Charmonium spectrum — new states

Search for non-qqq or non-q \overline{q} hadrons: so far no compelling candidates

Charmonium and charmonium-like states useful for this search:

- separation between states larger
- states presumably less mixed than in light quark sector
- Exciting possibility to find exotics among new states

IG U

Charmonia and charmonium-like resonances

See E. Prencipe's talk (Wednesday, Spectroscopy 1) for new BABAR results

е

$${}^+e^- o \gamma_{
m ISR}$$
J/ $\psi \, \pi^+ \pi^-$: Y(4260) $m = 4244 \pm 5 \pm 4$ MeV $\Gamma = 114^{+16}_{-15} \pm 7$ MeV

No hint for Y(4008) as seen by Belle $\pi^+\pi^-$ consistent with S-wave

arXiv:1204.2158 [hep-ex]

$$e^+e^- o \gamma_{ISR}\psi(2S)\pi^+\pi^-$$
:
Y(4360), Y(4660)

Charm 2012

Charmonia and charmonium-like resonances

See E. Prencipe's talk (Wednesday, Spectroscopy 1) for new BABAR results

 $\gamma \gamma \rightarrow J/\psi \omega$ X(3915) seen; spin-parity analysis ongoing No hint for X(3872) in this reaction

Generally very good agreement (except Y(4008)) between Belle and BABAR

Charged charmonium-like states: a Z^+ family?

Belle observes broad, **charged** charmonium-like states in $(c\bar{c})K\pi$ Dalitz plots

 $Z(4430)^+ \text{ in } B \rightarrow \psi(2S)\pi^+ K$ $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B \to \chi_{c1} \pi^+ K$

Phys. Rev. Lett. 100, 142001 (2008)

Phys. Rev. D 78, 072004 (2008)

Quark content at least $|c\bar{c}u\bar{d}\rangle = No$ simple $q\bar{q}$ meson!

• $2 - Z^+$ favoured over $1 - Z^+$

most clearly seen in $1.0 < m_{\kappa\pi}^2 < 1.75 \, {
m GeV}^2$

Charged charmonium-like states: a Z^+ family?

BABAR Phys. Rev. D 79, 112001 (2009):

- No significant evidence for Z(4430) found in $B \rightarrow \psi(2S)\pi^+K$
- No resonant behaviour in $J/\psi \pi^+$ seen in $B \rightarrow J/\psi \pi^+ K$

Belle: no significant $Z \rightarrow J/\psi \pi$; K. Chilikin, Wed. Spectroscopy 1

Z states decaying to χ_{c1} : reconstruction difficult in hadron machines

Search for Z₁ and Z₂ in BABAR data

Reflections

Interference effects in three-body *B* decay can produce peaks in mass projections (reflections)

Striking example provided by $D^0 \rightarrow \overline{K}^0 K^+ K^-$ BABAR, Phys. Rev. D 72, 052008 (2005) $D^{0} \rightarrow \overline{K^{0}} K^{+} K^{-}$ 800 700 n²(Kⁿ K⁺) (GeV²/c⁴) 600 500 400 300 200 100 n 1.2 14 1.6 1.8 $m^{2}(K^{+}K^{-})(GeV^{2}/c^{4})$ $m^{2}(\overline{K}^{0} K^{+}) GeV^{2}/c^{4}$

No resonances in $K^+ \bar{K}^0$ channel. Structures visible in projection created from resonances in $K^+ K^-$.

Note: $B \rightarrow \psi(2S) \kappa \pi$ more complicated: Two kinematic variables of Dalitz plot not sufficient to describe angular structure

e.g. *BABAR B* \rightarrow *J*/ ψ *K* π , Phys. Rev. D **71**, 032005 (2005)

Charm 2012

BABAR's search for $Z_1(4050)^+$, $Z_2(4250)^+$

Obtain good **and simple** description of $K\pi$ system:

□ mass (resonance model)

□ and angular distribution (determined directly from data)

Use this model to predict distribution of $m_{\chi_{c1}\pi^+}$

Search for any excess in $m_{\chi_{c1}\pi^+}$

BABAR, Phys. Rev. D 85, 052003 (2012)

Charm 2012

9

B decay modes

Reconstruct B decays (+ charge conjugate)

$$\begin{split} \bar{B}^0 &\to \pi^+ \, \mathrm{K}^- \, \chi_{c1} (\to \mathrm{J}/\psi \, \gamma) \\ B^+ &\to \pi^+ \, \mathrm{K}^0_{\mathrm{S}} \, \chi_{c1} (\to \mathrm{J}/\psi \, \gamma) \end{split}$$

Control studies performed on

$$ar{B}^0 o \pi^+ \, extsf{K}^- \, extsf{J}/\psi \ B^+ o \pi^+ \, extsf{K}^0_{ extsf{s}} \, extsf{J}/\psi$$

Reconstruct J/ $\psi
ightarrow e^+e^-$, $\mu^+\mu^-$ and ${\it K_{s}^{0}}
ightarrow \pi^+\pi^-$

Positive PID required on all tracks except $K^0_s o \pi^+\pi^-$ which is identified by mass and displaced vertex

J/ $\psi\,\pi^+$ mass resolution around $m\sim$ 4 GeV: $\sigma(m)\sim$ 2 - 3 MeV

Integrated luminosity at $\Upsilon(4S)$: 429 fb⁻¹

W. Gradi — New results on X, Y, Z at BABAR

Reconstruction of $B \rightarrow \chi_{c1} K \pi$

Kinematic variables to select signal events:

$$\Delta E \equiv E_B^* - \frac{\sqrt{s}}{2}$$
$$m_{\rm ES} \equiv \sqrt{E_{\rm beam}^{*2} - \vec{p}_B^{*2}}$$
$$= \sqrt{((s/2 + \vec{p}_i \cdot \vec{p}_B)/E_i)^2 - \vec{p}_B^2}$$

Backgrounds taken from ΔE sidebands

From ΔE distribution:

	Events	Purity (%)
$B^0 ightarrow \pi^+ K^- \chi_{c1} \ B^+ ightarrow \pi^+ K^0_s \chi_{c1}$	1863 628	$\begin{array}{c} \textbf{78.3} \pm \textbf{0.9} \\ \textbf{79.7} \pm \textbf{1.6} \end{array}$

 $\chi_{c1}
ightarrow J\!/\psi\,\gamma$ after selection on ΔE , $m_{
m ES}$

 ΔE after selection on $m_{\rm ES}$ and $m_{J/\psi\gamma}$

Charm 2012

Efficiency

Need efficiency $\varepsilon(m_{K\pi}, \cos \theta)$ to describe $K\pi$ system

 $\cos \theta$: *K* helicity angle: $\theta = \angle (-\vec{p}_{\chi_{c1}}, \vec{q}_K)$ in $K\pi$ rest frame

Move from 'conventional' Dalitz plot to 'rectangular DP'

$$(m_{K\pi}^2, m_{\chi_{c1}\pi}^2) \rightsquigarrow (m_{K\pi}, \cos \theta)$$

d $ho \sim dm_{K\pi}^2 dm_{\chi_{c1}\pi}^2 \rightsquigarrow pq dm_{K\pi} d \cos \theta$

Phase space density uniform in $\cos \theta$ at constant $m_{K\pi}$

Use phase space simulated events

ig U

Efficiency in $m_{\chi_{c1}\pi}$

Project efficiency on $\chi_{c1}\pi^+$ mass:

- drop at edges due to loss of slow π and K
- smooth in the vicinity of the Z masses

Charm 2012

Efficiency in $(m_{\kappa\pi}, \cos\theta)$

Procedure to smooth out statistical fluctuations:

fit $\cos \theta$ dependence in 50 MeV wide slices of $m_{K\pi}$ with spherical harmonics:

$$\varepsilon(m_{K\pi},\cos\theta) = \sum_{L=0}^{12} a_L(m_{K\pi}) Y_L^0(\cos\theta)$$

• fit $a_L(m_{K\pi})$ with polynomials

use this parametrisation to interpolate

Branching fractions

Measure branching fraction $B \rightarrow \chi_{c1} \kappa \pi^+$ relative to $B \rightarrow J/\psi \kappa \pi^+$

$$\frac{\mathcal{B}(\bar{B}^0 \to \chi_{c1} \kappa^- \pi^+)}{\mathcal{B}(\bar{B}^0 \to J/\psi \kappa^- \pi^+)} = 0.474 \pm 0.013 \pm 0.062$$
$$\frac{\mathcal{B}(B^+ \to \chi_{c1} \kappa^0 \pi^+)}{\mathcal{B}(B^+ \to J/\psi \kappa^0 \pi^+)} = 0.501 \pm 0.024 \pm 0.090$$

Systematics dominated by background subtraction and χ_{c1} BF. Branching fractions for \bar{B}^0 and B^+ consistent.

Using $\mathcal{B}(B \to J/\psi \kappa \pi)$ from BABAR Phys. Rev. D 79, 112001 (2009):

$$\begin{aligned} \mathcal{B}(\bar{B}^0 \to \chi_{c1} \kappa^- \pi^+) &= (5.11 \pm 0.15 \pm 0.67) \times 10^{-4} \\ \mathcal{B}(B^+ \to \chi_{c1} \kappa^0 \pi^+) &= (5.52 \pm 0.28 \pm 0.99) \times 10^{-4} \end{aligned}$$

In agreement with Belle's value

$$\mathcal{B}(\bar{B}^0 \to \chi_{c1} K^- \pi^+) = (3.83 \pm 0.10 \pm 0.39) \times 10^{-4}$$

Dalitz plots for signal and background

 $ar{B^0}
ightarrow \chi_{c1} {\it K}^- \pi^+$

Band from $K^*(892)^0$ Indication for $K_2^*(1430)^0$ Within statistics, \overline{B}^0 and B^+ Dalitz plots are similar and can be combined.

Signal and background

Uncorrected, combined DP projections for signal and background

- Subtract sideband distributions
- weight each event by $1/\varepsilon(m_{K\pi}, \cos\theta)$

Signal yields (after background subtraction):

Belle: 2126
$$\bar{B}^0 \to \chi_{c1} K^- \pi^+$$

BABAR: 1453 $\bar{B}^0 \to \chi_{c1} K^- \pi^+ + 496 B^+ \to \chi_{c1} K_s^0 \pi^+$

JG U

Modelling $K\pi$ mass distribution

Fit to background-subtracted and efficiency corrected $K\pi$ mass spectrum:

Expect S, P, D wave amplitudes are sufficient

Correct for $\cos \theta$ -dependence of efficiency interference terms between $K\pi$ amplitudes vanish when integrated over $\cos \theta$

Fit model:

S-wave: LASS parametrisation (non-resonant $K\pi + K_0^*(1430)$)

■ *D*-wave: *K*^{*}₂(1430)

$$\frac{\mathrm{d}N}{\mathrm{d}m_{\kappa\pi}} = N \left[f_S \frac{G_S(m_{\kappa\pi})}{\int G_S(m_{\kappa\pi}) \mathrm{d}m_{\kappa\pi}} + f_P \frac{G_P(m_{\kappa\pi})}{\int G_P(m_{\kappa\pi}) \mathrm{d}m_{\kappa\pi}} + f_D \frac{G_D(m_{\kappa\pi})}{\int G_D(m_{\kappa\pi}) \mathrm{d}m_{\kappa\pi}} \right]$$
with fit fractions $f_S + f_P + f_D = 1$

Nucl. Phys. B296, 493 (1988)

Modelling $K\pi$ mass distribution

Good description of data Small *P*-wave contribution from $K^*(1680)$ needed S-wave contribution significantly larger than in $J/\psi K\pi$ or $\psi(2S)K\pi$ ($f_S \approx 16\%$)

$K\pi$ Legendre moments

- Represent $K\pi$ angular distribution at given $m_{K\pi}$ by expansion in Legendre polynomials $\Rightarrow \langle Y_L^0 \rangle$
- Spin-1 resonance in final state: J/ψ or χ_{c1}
 P and D wave amplitudes can be present in three helicity states
- \(\lambda V_L^0\) show complicated admixture of different partial waves and their interference terms.

After integration over χ_{c1} decay angles:

$$\begin{split} \left< Y_{1}^{0} \right> &= S_{0}P_{0}\cos(\delta_{S_{0}} - \delta_{P_{0}}) + \sqrt{\frac{8}{5}}P_{0}D_{0}\cos(\delta_{P_{0}} - \delta_{D_{0}}) \\ &+ \sqrt{\frac{6}{5}}\left(P_{+1}D_{+1}\cos(\delta_{P_{+1}} - \delta_{D_{+1}}) + P_{-1}D_{-1}\cos(\delta_{P_{-1}} - \delta_{D_{-1}})\right) \end{split}$$

$$\begin{split} \left< Y_2^0 \right> &= \sqrt{\frac{2}{5}} P_0^2 + \frac{\sqrt{10}}{7} D_0^2 + \sqrt{2} S_0 D_0 \cos(\delta_{S_0} - \delta_{D_0}) \\ &- \left(\frac{1}{\sqrt{10}} (P_{+1}^2 + P_{-1}^2) + \frac{5\sqrt{10}}{28} (D_{+1}^2 + D_{-1}^2) \right) \end{split}$$

$K\pi$ Legendre moments

- Add \overline{B}^0 and B^+ data; weight each event by Legendre polynomial $Y_L^0(\cos \theta)$, in bins of $m_{K\pi}$
- Efficiency corrected, background subtracted distributions
- $\langle Y_1^0 \rangle$ moment: *S*-*P* interference; enhancement at $m_{K\pi} \approx 1.7 \text{ GeV}$
- Spin-1 K^{*}(892) in ⟨Y⁰₂⟩, evidence for spin-2 K^{*}₂(1430) seen in ⟨Y⁰₄⟩
- $\langle Y_6^0 \rangle$ and higher moments consistent with zero

Data-driven MC simulations

- Localised structure in $\chi_{c1}\pi$ should show up especially in high $\langle Y_L^0 \rangle$
- Can χ_{c1}π⁺ mass spectrum be described using only information from Kπ⁺ system?
- Find **minimal set** of $\langle Y_L^0 \rangle$ for adequate description of data
- Simulation:
 - 1. Generate $B \rightarrow \chi_{c1} \kappa \pi^+$ according to phase space
 - 2. Mass-dependent weight w_m derived from fit to $m_{K\pi}$ distribution
 - 3. Angular structure by weight w_L as

$$w_{L}(m_{K\pi},\cos\theta) = \sum_{i=0}^{L_{\max}} \langle Y_{i}^{N} \rangle (m_{K\pi}) Y_{i}^{0}(\cos\theta)$$

where $\langle Y_i^N \rangle (m_{K\pi})$ interpolates between normalised moments $\langle Y_i^0 \rangle / n$ at particular $m_{K\pi}$ masses

4. Total weight of event with $K\pi$ mass m_i and helicity angle θ_i :

$$w_j(m_j,\cos\theta_j) = w_m(m_j) \times w_L(m_j,\cos\theta_j)$$

Data-driven MC simulations: $B \rightarrow J/\psi K \pi^+$

Consistency check: test method with $B \rightarrow J/\psi K \pi^+$ no evidence of (broad or narrow) resonance in $J/\psi \pi^+$ seen in data

Vary Lmax from 4 to 6

L _{max}	$\chi^2/{ m NDF}$
4	223/152
5	162/152
6	180/152

Dotted line: without angular weights w_L Solid line: using angular weights w_L

With this method: good description of J/ $\psi\,\pi^+$ mass spectrum seen in data

Angular weights required!

IG U

Data-driven MC simulations: $B \rightarrow \chi_{c1} \kappa \pi^+$

Use same procedure on combined data $B o \chi_{c1} \kappa \pi^+$

Obtain excellent description of data with $L_{max} = 5$; $\chi^2 / \text{NDF} = 46/58$

Indicates that no additional resonant structure is needed to describe $\chi_{c1}\pi^+$ mass distribution

How would $Z^+ \rightarrow \chi_{c1} \pi^+$ show up?

Artificially add pprox 25% contribution of scalar $Z_2(4250)^+ o \chi_{c1}\pi^+$ to data

Rel. Breit Wigner with Belle's parameters for mass and width: m = 4248 MeV; $\Gamma =$ 177 MeV

Repeat procedure with Legendre polynomial moments for whole sample

'mixed' simulation fails to describe MC data

Need $L_{max} = 15$ for adequate description

Search for Z resonances

Fit to $\chi_{c1}\pi^+$ mass spectrum using following models:

- Prediction of 'mixed' MC simulation as 'background' from $K\pi$ system
- Fit single Z⁺ with $m_{Z^+} =$ 4150 MeV and $\Gamma_{Z^+} =$ 352 MeV
- **Z**₁(4050)⁺ and $Z_2(4250)^+$: scalar rel. Breit-Wigner shapes with mass and width fixed to Belle's measurement:

Resonance	N_{σ}	Fraction (%)	χ^2 / NDF
Z(4150)+	1.1	$\textbf{4.0} \pm \textbf{3.8}$	61/58

Search for Z resonances

Fit to $\chi_{c1}\pi^+$ mass spectrum using following models:

- Prediction of 'mixed' MC simulation as 'background' from $K\pi$ system
- Fit single Z^+ with $m_{Z^+} = 4150$ MeV and $\Gamma_{Z^+} = 352$ MeV
- $Z_1(4050)^+$ and $Z_2(4250)^+$: scalar rel. Breit-Wigner shapes with mass and width fixed to Belle's measurement:

	m/ Gev	I / IVIEV
Z_1^+	4051	82
Z_2^+	4248	177

Resonance	N_{σ}	Fraction (%)	χ^2/NDF
<i>Z</i> (4150)+	1.1	$\textbf{4.0} \pm \textbf{3.8}$	61/58
$Z_1(4050)^+$ $Z_2(4250)^+$	1.1 2.0	$\begin{array}{c} \textbf{1.6} \pm \textbf{1.4} \\ \textbf{4.8} \pm \textbf{2.4} \end{array}$	57/57

Search for Z resonances

Belle: maximal resonant activity in window $1.0 < m_{K\pi}^2 < 1.75 \, {\rm GeV}^2$

Repeat fits in this $K\pi$ mass range

Resonance	N_{σ}	Fraction (%)	χ^2/NDF
<i>Z</i> (4150)+	1.7	$\textbf{13.7} \pm \textbf{8.0}$	53/47
$Z_1(4050)^+$ $Z_2(4250)^+$	1.2 1.3	$\begin{array}{c} \textbf{3.5} \pm \textbf{3.0} \\ \textbf{6.7} \pm \textbf{5.1} \end{array}$	53/46

In all cases low statistical significances ($\leq 2\sigma$)

Limits on Z production

Varying Z resonance parameters, repeating fits: no significant changes

Set upper limits at 90% C.L.:

$$\begin{split} \mathcal{B}(\bar{B}^0 \to Z_1^+ K^-) \times \mathcal{B}(Z_1^+ \to \chi_{c1} \pi^+) < 1.8 \times 10^{-5} \\ \mathcal{B}(\bar{B}^0 \to Z_2^+ K^-) \times \mathcal{B}(Z_2^+ \to \chi_{c1} \pi^+) < 4.0 \times 10^{-5} \end{split}$$

For a single $Z(4150)^+$, upper limit

$$\mathcal{B}(\bar{B}^0 \rightarrow Z^+ K^-) imes \mathcal{B}(Z^+ \rightarrow \chi_{c1} \pi^+) < 4.7 imes 10^{-5}$$

Within (large) uncertainties, limits compatible with Belle's results:

$$\mathcal{B}(\bar{B}^0 \to Z_1^+ K^-) \times \mathcal{B}(Z_1^+ \to \chi_{c1} \pi^+) = (3.0^{+1.5+3.7}_{-0.8-1.6}) \times 10^{-5}$$
$$\mathcal{B}(\bar{B}^0 \to Z_2^+ K^-) \times \mathcal{B}(Z_2^+ \to \chi_{c1} \pi^+) = (4.0^{+2.3+19.7}_{-0.9-0.5}) \times 10^{-5}$$

Belle, Phys. Rev. D 78, 072004 (2008)

Charm 2012

Summary

Phys. Rev. D **85**, 052003 (2012)

BABAR studied $B \to \chi_{c1} \kappa \pi$ decays using full on- $\Upsilon(4S)$ dataset (473M $B\bar{B}$)

Resonant $K\pi$ structure, angular distributions similar in \overline{B}^0 and B^+ decays but different from $B \rightarrow J/\psi K\pi$: larger S-wave contribution, $K^*(1680)$

Describe $B \rightarrow \chi_{c1} K \pi$ using only resonant structure in $K \pi$ system: excellent description of the $\chi_{c1} \pi$ mass spectrum

Additional resonances required? Not statistically significant. ••• Upper limit on Z production

Do not statistically rule out existence of $Z_1(4050)^+$, $Z_2(4250)^+$

However, obtain good description of data without additional resonances in $\chi_{c1}\pi^+$ system

Charm 2012

Extra slides

The BABAR experiment at PEP-II

- e^+e^- -collider running at $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV}$
- Asymmetric beam energies to separate B decay vertices
- $\blacksquare~$ Peak luminosity $\sim 1.2 \times 10^{34}\, \text{cm}^{-2}\text{s}^{-1}$

- Data taking stopped April 2008
- $\mathcal{L}_{int} = 531 \, \text{fb}^{-1}$ 471 million $B\bar{B}$ pairs on-Y(4S)

Comparison Belle and BABAR: $\psi(2S)$ K π

JGU

Comparison Belle and BABAR: $\psi(2S)K\pi$

JGU

Systematics for branching fraction

Contribution	Fractional error $ar{B}^0 o \chi_{c1} {\it K}^- \pi^+$	Fractional error $B^+ o \chi_{c1} K_s^0 \pi^+$
Background subtraction	0.037	0.063
Efficiency	0.015	0.039
Efficiency binning	0.011	0.019
χ_{c1} branching fraction	0.044	0.044
γ reconstruction	0.018	0.018
ΔE and $m_{\rm ES}$ selections	0.010	0.010
Total	0.062	0.090

Dalitz plots for signal and background

 $ar{B^0}
ightarrow \chi_{c1} K^- \pi^+$ 24 24 signal sidebands m²(χ_{c1} π⁺) Gev²/c⁴ 22 m²(χ₆₁ π⁺) Gev²/c⁴ 14 14 12 12 0.5 2.5 3 3.5 0.5 2.5 3 3.5 1.5 2 1.5 2 $m^{2}(K^{-}\pi^{*}) Gev^{2}/c^{4}$ $m^{2}(K^{-}\pi^{*}) Gev^{2}/c^{4}$ $B^+ \rightarrow \chi_{c1} K_s^0 \pi^+$ 24 signa sidebands m²(χ_{c1} π⁺) Gev²/c⁴ m²(χ_{e1} π⁺) Gev²/c⁴ 18 10 25 19 18 25 14 14 12 السببابية W. Gradi — New results on X, Y, Z at Data BAR 1 12 1.5 2 2.5 3 3.5 35 0.5 1.5 2 2.5 3 3.5

JG U

Charm 2012

Comparison: BABAR and Belle

