New Belle results on $D^0 - \overline{D}^0$ mixing

Marko Starič

Belle collaboration **b** Jožef Stefan Institute, Ljubljana

CHARM 1012

M. Starič (IJS)

New Belle results on $D^0 - \overline{D}^0$ mixing

Hawaii, 14-17 May, 2012

ヨト・イヨト

1 / 21

E 990

- Introduction
- Updated measurement in $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ (976 fb⁻¹)
- Conclusions

Mixing formalism

- $|D_{1.2}^0
 angle=p|D^0
 angle\pm q|ar{D^0}
 angle$ • Flavor eigenstates \neq mass eigenstates: • $p/q \neq 1 \Rightarrow CP$ violation (CPV)
- Time evolution of a $D^0 \overline{D^0}$ system

$$i\frac{\partial}{\partial t} \begin{pmatrix} |D^0\rangle \\ |\bar{D^0}\rangle \end{pmatrix} = (\hat{M} - i\frac{\hat{\Gamma}}{2}) \begin{pmatrix} |D^0\rangle \\ |\bar{D^0}\rangle \end{pmatrix}$$

with \hat{M} and $\hat{\Gamma}$ being hermitian

Solutions:

$$|D^{0}(t)\rangle = e^{-(\Gamma/2+im)t} \left[\cosh\left(\frac{y+ix}{2}\Gamma t\right)|D^{0}\rangle + \frac{q}{p}\sinh\left(\frac{y+ix}{2}\Gamma t\right)|\bar{D^{0}}\rangle\right]$$
$$|\bar{D^{0}}(t)\rangle = e^{-(\Gamma/2+im)t} \left[\frac{p}{q}\sinh\left(\frac{y+ix}{2}\Gamma t\right)|D^{0}\rangle + \cosh\left(\frac{y+ix}{2}\Gamma t\right)|\bar{D^{0}}\rangle\right]$$

• Mixing parameters:

$$x = \frac{\Delta m}{\Gamma} \qquad y = \frac{\Delta \Gamma}{2\Gamma}$$
New Belle results on $D^0 - \overline{D}^0$ mixing Hawaii, 14-17 May, 2012 3 / 21

M. Starič (IJS)

• Since D^0 mixing is small $(|x|, |y| \ll 1)$:

$$|D^0(t)
angle=e^{-(\Gamma/2+im)t}[|D^0
angle+rac{p}{q}(rac{y+ix}{2}\Gamma t)|ar{D^0}
angle]$$

• Time dependent decay rates of $D^0 \rightarrow f$:

$$rac{dN_{D^0
ightarrow f}}{dt} \propto |\langle f| \mathcal{H} | D^0(t)
angle|^2 = e^{-\Gamma t} ig| \langle f| \mathcal{H} | D^0
angle + rac{q}{p} (rac{y+ix}{2} \Gamma t) \langle f| \mathcal{H} | \overline{D}^0
angle ig|^2$$

- Exponential decay modulated with x and y
 - x and y can be obtained from measured time dependence of $\frac{dN_{D^0 \to f}}{dt}$
- Shape is final state dependent
 - different final states sensitive to different combinations of x and y

Hawaii, 14-17 May, 2012

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うらの

Charm production at Belle

B-factories are also charm-factories: $\sigma_{c\overline{c}} \approx \sigma_{b\overline{b}}$

KEKB B-factory

- Asymmetric e^+e^- collider
- primarily at $\Upsilon(4S)$
- also $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \Upsilon(5S)$

•
$$\int \mathcal{L}dt = 1 \text{ ab}^-$$

- $\bullet\,$ Charm production $\sigma_{c\overline{c}}\sim 1~{\rm nb}\longrightarrow \sim 10^9$ charm events at Belle
- Easy to reject D mesons from B decays using simple kinematic cuts:
 - $p_D^* > 2.5 ~{
 m GeV/c}$ at $\Upsilon(4S)$
 - $p_D^* > 3.1~{
 m GeV/c}$ at $\Upsilon(5S)$

Belle II will collect 50 times more (talk by A. Schwartz)

M. Starič (IJS)

New Belle results on $D^0 - \overline{D}^0$ mixing

Hawaii, 14-17 May, 2012

🚰 Experimental method

- Usually using $D^{*+} \rightarrow \pi^+ D^0$
 - flavor tagging by $\pi_{\textit{slow}}$ charge
 - background suppression
- D^0 proper decay time measurement:

$$t = rac{I_{dec}}{ceta\gamma} \;, \qquad eta\gamma = rac{p_{D^0}}{M_{D^0}}$$

- decay time uncertainty σ_t calculated from vtx err. matrices
- To reject D^{*+} from *B* decays:
- Observables:

•
$$m = m(K\pi)$$

• $q = m(K\pi\pi_s) - m(K\pi) - m_\pi$

 $p_{D^{*+}}^{CMS} > 2.5$ (3.1) GeV/c

Hawaii, 14-17 May, 2012

$\overset{{oldsymbol{G}}}{=}$ Decays to *CP*-even eigenstates $D^0 o K^+ K^-, \pi^+ \pi^-$

- Measurement of lifetime difference btw. $D^0\to K^-\pi^+$ and $D^0\to K^+K^-,\pi^+\pi^-$
- Timing distributions are exponential (if CP is conserved)
 - mixing parameter:
 - if CP conserved: $y_{CP} = y$

$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - \frac{\tau(K^-\pi^+)}{\tau(K^+K^+)} - \frac{\tau(K^+\pi^+)}{\tau(K^+K^+)} - \frac{\tau(K^+$$

• If CP violated \rightarrow difference in lifetimes of $D^0/\overline{D^0} \rightarrow K^+K^-, \pi^+\pi^-$

• lifetime asymmetry:
$$A_{\Gamma} = \frac{\tau(\overline{D}{}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}{}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$$

•
$$y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$$

• $A_{\Gamma} = \frac{1}{2} A_M y \cos \phi - x \sin \phi$

(S. Bergmann et.al., PLB 486, 418 (2000))

Hawaii, 14-17 May, 2012

Event Selection

- Reconstruction
 - K and π selection
 - vertex fits
 - p*(D*+) > 2.5(3.1) GeV/c
- Analysis cuts: Δm , Δq , σ_t
 - optimized on tuned Monte Carlo
 - figure of merit: statistical error on y_{CP}
- Background estimated from sidebands in *m*
 - sideband position optimized
- Signal yields (purities) entering the measurement

channel	KK	$K\pi$	$\pi\pi$
yield	242k	2.61M	114k
purity	98.0%	99.7%	92.9%

M. Starič (IJS)

New Belle results on $D^0 - \overline{D}^0$ mixing

Monte Carlo tuning

- MC used for cut optimization and sideband position selection
- Very good agreement with data in shapes of M, q and σ_t distributions
- $\bullet\,$ However, signal/background fractions differ by 10% 20% \rightarrow tuning needed
- Correction factors obtained from 2D fit to M q data distributions
 - MC shapes used for different event types

$$\overset{m O}{=}~~ D^0 o {\cal K}^+ {\cal K}^-, \pi^+ \pi^-$$
 (update with 976 ${
m fb}^{-1}$)

Mean proper decay time as a function of $\cos \theta^*$ for $D^0 o K^- \pi^+$

- Disagreement between data and MC of up to 5% of lifetime
 - due to different resolution function offsets
 - attributed to SVD misalignments
- Measurement therefore performed in bins of $\cos \theta^*$
 - 20 bins
 - additional cut: $|\cos heta^*| < 0.9$ (1% events lost)

Resolution function (for binned fit)

- \bullet Constructed from normalized distribution of σ_t
 - Using 2 or 3 Gaussian PDF for each σ_t bin
- PDF parameters determined in each $\cos \theta^*$ bin by fitting the distribution of pulls $(t - t_{gen})/\sigma_t$
 - widths σ_k^{pull} , fractions w_k

$$R(t) = \sum_{i=1}^{n_{\text{bin}}} f_i \sum_{k=1}^{n_g} w_k G(t; \mu_i, \sigma_{ik})$$

$$\sigma_{ik} = \frac{s_k}{\sigma_k} \sigma_k^{\text{pull}} \sigma_i \qquad \mu_i = \frac{t_0}{\sigma_i} + \frac{s_0}{\sigma_i} (\sigma_i - \sum_{j=1}^n f_j \sigma_j)$$

 $n_{
m bin} = 50$

Free parameters:

1

- width scaling factors: s_k , $k = 1, ..., n_g$ ($n_g = 2$ or 3)
- resolution function offset: t_0
- slope to model asymmetry: a

M. Starič (IJS)

New Belle results on $D^0 - \overline{D}^0$ mixing

Hawaii, 14-17 May, 2012 11 / 21

$$\overset{m{O}}{=} D^0 o {\cal K}^+ {\cal K}^-, \pi^+ \pi^-$$
 (update with 976 ${
m fb}^{-1}$)

Proper decay time distribution

Parameterization

$$f(t) = \frac{N}{\tau} \int e^{-t'/\tau} R(t-t') dt' + B(t)$$

- Free parameters: N, τ , s_k , t_0 , a
- Sideband subtracted σ_t distribution used to construct R(t)

Hawaii, 14-17 May, 2012

글 > - + 글 >

E Sac

12 / 21

Image: A matrix

$$\overset{m{O}}{=} D^0 o {\cal K}^+ {\cal K}^-, \pi^+ \pi^-$$
 (update with 976 ${
m fb}^{-1}$)

Background

• Two lifetime components (zero and non-zero lifetime)

$$B(t) = N_b \int [f \delta(t') + (1-f) \frac{1}{\tau_b} e^{-t'/\tau_b}] R_b(t-t') dt'$$

- Background resolution function:
 - symmetric (a = 0) with $n_g = 3$ and $s_3 = s_2$
- Fraction f is $\cos \theta^*$ dependent, fixed from tuned-MC
- Free parameters t_0, s_1, s_2, τ_b
 - $\bullet\,$ determined by fit to sideband distributions summed over $\cos\theta^*$ bins
 - B(t) is still $\cos \theta^*$ dependent due to σ_t distribution, f and N_b

Simultaneous fit

- Decay modes fitted simultaneously in each $\cos\theta^*$ bin
 - binned maximum likelihood fit
- Shared parameters:
 - y_{CP} , A_{Γ} (KK and $\pi\pi$)
 - t₀, a (all decay modes)
 - s_1 , s_2 , s_3 (up to an overall scaling factor)
- Fit x-checked with generic MC (6×data statistics)
 - $y_{CP} = (-0.02 \pm 0.08)\%$, $A_{\Gamma} = (-0.00 \pm 0.08)\%$ \rightarrow consistent with zero
 - $\tau_{K\pi} = (411.30 \pm 0.18) \text{ fs}$
 - \rightarrow consistent with generated lifetime (411.6 $\rm fs)$
- Linearity x-checked with MC re-weighted to different y_{CP}
 - no bias found

M. Starič (IJS)

Linearity

- Minos status: successful for all fits (2×18 fits)
- \bullet Confidence levels of fits above 5% (except one with CL=3.3%)

M. Starič (IJS)

New Belle results on $D^0 - \overline{D}^0$ mixing

Hawaii, 14-17 May, 2012

ay, 2012 15 / 21

sample	уср (%)	A _Γ (%)	au (fs)
SVD1	1.46 ± 0.60	-0.03 ± 0.54	410.81 ± 1.50
SVD2	1.06 ± 0.23	-0.03 ± 0.21	408.23 ± 0.58
SVD1+SVD2	1.11 ± 0.22	-0.03 ± 0.20	408.56 ± 0.54

- y_{CP} at $5.1\sigma_{\rm stat}$
- A_{Γ} consistent with zero
- $\tau_{K\pi}$ consistent between SVD1 and SVD2 within 1.6 σ and consistent with PDG within 1σ

M. Starič (IJS)

New Belle results on $D^0 - \overline{D}^0$ mixing

Hawaii, 14-17 May, 2012

7 May, 2012 16 / 21

$$\overset{{oldsymbol{O}}}{{oldsymbol{ O}}} D^0 o {\mathcal K}^+ {\mathcal K}^-, \pi^+ \pi^-$$
 (update with 976 ${
m fb}^{-1}$)

Systematics

source	Δy_{CP} (%)	ΔA_{Γ} (%)
acceptance	0.050	0.044
SVD misalignments	0.060	0.041
mass window position	0.007	0.009
background	0.059	0.050
resolution function	0.030	0.002
binning	0.021	0.010
sum in quadrature	0.11	0.08

SVD misalignments:

- Studied with misaligned signal MC:
 - different local and different global misalignments simulated
- Found to affect resolution function considerably (especially t_0)
- Effect very similar for KK, $K\pi$ and $\pi\pi$
 - small impact on y_{CP} , A_{Γ} , large impact on $\tau_{K\pi}$

M. Starič (IJS)

New Belle results on $D^0 - \overline{D}^0$ mixing

Hawaii, 14-17 May, 2012

→

$$\overset{oldsymbol{G}}{=} D^0 o {\mathcal K}^+ {\mathcal K}^-, \pi^+ \pi^-$$
 (update with 976 ${
m fb}^{-1}$)

SVD misalignments

• Impact on resolution function offset t_0 (shown for $K\pi$)

• Impact on the difference of resolution function offsets $t_0^{KK} - t_0^{K\pi}$

Background

• The second largest source of sistematics; two contributions

• statistical fluctuations of sideband distribution

 \rightarrow propagate to 0.051% (y_{CP}) and 0.050% (A_{\Gamma})

- approximation of signal-window background with sideband \rightarrow estimated from tuned MC (0.029% y_{CP}, 0.007% A_Γ)
- To validate second point:
 - data/tuned-MC sideband time distributions in good agreement

$$\overset{{oldsymbol{G}}}{=} D^0 o {\mathcal K}^+ {\mathcal K}^-, \pi^+ \pi^-$$
 (update with 976 ${
m fb}^{-1}$)

Results (preliminary)

$$y_{CP} = (+1.11 \pm 0.22 \pm 0.11)\%$$

 $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$

- y_{CP} is at 4.5 σ when both errors are combined in quadrature and at 5.1 σ if only statistical error is considered
- A_{Γ} is consistent with no indirect *CP* violation.

- The measurement of $D^0 \overline{D}^0$ mixing in $D^0 \to K^+ K^-, \pi^+ \pi^-$ decays has been updated with the full Belle data of 976 fb⁻¹
- We measure $y_{CP} = (+1.11 \pm 0.22 \pm 0.11)\%$
 - the most sensitive and the most significant measurement of any mixing parameter up to now
 - consistent with our previous measurement on 540 ${\rm fb}^{-1}$, where we found the first evidence for $D^0-\overline{D}^0$ mixing
 - consistent also with BaBar measurements in these decays
- We also measure ${\cal A}_{\Gamma}=(-0.03\pm0.20\pm0.08)\%$
 - consistent with no indirect CP violation
 - the most stringent limits on A_{Γ} up to now

Hawaii, 14-17 May, 2012

(ロ) (同) (目) (日) (日) (0)