An study of relativistic energy, momentum, and particle colllisions

Natalie Nagata ProjectReview PHYS 305: Computational Physics

Overview

- Background
- Objective
- Project Approach
- Results (thus far)
- Discussion
- Further work

Background

 1905 ("Annus Mirabilis", the Miracle Year!)

 Albert Einstein—from patent office clerk to science rockstar!

Special Relativity

- Postulate 1
 - $\circ~$ The laws of physics remain the same in all inertial frames
- Postulate 2
 - $\circ~$ The speed of light is invariant in all inertial frames
- What does this mean???
 - Time dilation
 - Length contraction
 - Relativistic energies and momentum!

• Show the relationship between relativistic momentum and energy (Lab frame vs CM frame)

Fig. 1 Two-particle collision observed in lab and CM frames

http://teachers.web.cern.ch/teachers/archiv/hst2002/bubblech/mbitu/application s_of_special_relativi.htm

Velocity of CM with respect to (WRT) to lab frame,

$$\mathbf{v_{cm}} = \frac{\mathbf{pc}^2}{\mathbf{E}} \tag{1}$$

Total momentum and energy in lab frame,

$$\mathbf{p} = \mathbf{p}_{\mathbf{a}} + \mathbf{p}_{\mathbf{b}} = \mathbf{p}_{\mathbf{a}} \tag{2}$$

$$\mathbf{E} = \mathbf{E}_{\mathbf{a}} + \mathbf{E}_{\mathbf{b}} = \mathbf{E}_{\mathbf{a}} + \mathbf{m}_{\mathbf{0}\mathbf{b}} \mathbf{c}^2 \tag{3}$$

Using the energy-momentum relation,

$$\mathbf{E} = \mathbf{c} \cdot \sqrt{\mathbf{p}^2 + \mathbf{m}_0^2 \mathbf{c}^2} \tag{4}$$

Eqn. (1) rewritten as function of total lab momentum and lab energy

$$\mathbf{v_{cm}} = \frac{\mathbf{p_a}\mathbf{c}^2}{\mathbf{E_a} + \mathbf{m_{0b}}\mathbf{c}^2} \tag{5}$$

Momentum WRT the CM frame

$$\mathbf{p_{a}}' = \frac{\mathbf{p_{a}} - \frac{\mathbf{v_{cm}}}{\mathbf{c}^{2}} \mathbf{E_{a}}}{\sqrt{1 - \frac{\mathbf{v_{cm}}}{\mathbf{c}^{2}}}}; \qquad \mathbf{p_{b}}' = \frac{\mathbf{p_{b}} - \frac{\mathbf{v_{cm}}}{\mathbf{c}^{2}} \mathbf{E_{b}}}{\sqrt{1 - \frac{\mathbf{v_{cm}}}{\mathbf{c}^{2}}}}; \qquad (6)$$

Energy WRT the CM frame

$$\mathbf{E_{a}}' = \frac{\mathbf{E_{a}} - \mathbf{p_{a}} \mathbf{v_{cm}}}{\sqrt{1 - \frac{\mathbf{v_{cm}}^{2}}{c^{2}}}}; \qquad \mathbf{E_{b}}' = \frac{\mathbf{E_{b}} - \mathbf{p_{b}} \mathbf{v_{cm}}}{\sqrt{1 - \frac{\mathbf{v_{cm}}^{2}}{c^{2}}}}; \tag{7}$$

 Graphically calculate and display the minimum threshold energies in some particle collisions

 Necessary for the creation of certain particles

$$E_{a}^{min} = \frac{E_{T}^{'2} - (m_{a}^{2} + m_{b}^{2})c^{4}}{2m_{b}c^{2}}$$

Project Approach

88

Proje

- Defining
 - Constants
 - Functions passing functions by value and/or reference (be careful of naming)

·	▲
project.cpp	
// CONSTANTS	
double c = 3.00e8;	// speed of light [m/s]
double eV = 6.2415e18;	// conversion of kg to eV
<pre>double MeV = eV*c*c/pow(10., 6);</pre>	// conversion of kg to MeV
double m_electron = 9.1095e-31;	// electron mass [kg]
double m_proton = 1.6726e-27;	// proton mass [kg]
double m_neutron = 1.6749e-27;	// neutron mass [kg]
double m_muon = 1.8835e-28;	// muon mass [kg]
double beta(double v)	{ return v/c; }
double gamma (double V)	{ return 1./sqrt(1 (V*V)/(c*c)); }
// Energy, momentum functions	
double P_A(double m, double v)	{ return m*v; }
double E_A(double mA, double P_A)	{ return c*sqrt(P_A*P_A + mA*mA*c*c);
double E_B(double mB)	{ return mB*c*c; }
double P_Acm(double P_A, double be return gamma*(P A - (E A/c)	<pre>ta, double gamma, double E_A) { *beta);}</pre>
	i - Think waa katapaten usabaraharen a
return gamma*(E_A - P_A*Vo	mma, double E_A, double vcm) (mm);)
double P_Bcm (double gamma, double	a beta, double E_B) {
return gamma*((-1)*(E_B/c)	*beta);)
double E_Bcm (double gamma, double	a E_B) (
return gamma*E_B; }	
CONTRACTOR OF AND AND DESIGN OF SHARE FOR	

Project Approach

• While-loop

- Calls and defines energy and momentum functions
- Calculates total momentum and energy over a varying velocity from 0 to nearly the speed of light

Results (thus far)

Lab frame (0 < v/c < 1)

CM frame (0 < v/c < 1)

Discussion

• As $V \rightarrow C$

○ E (lab) >> E (CM frame)

• Energies of particle colliders using colliding beams (CM frame) instead of colliding with a stationary particle (lab frame)

Discussion

- Some significant things to keep in mind:
 O Unit conversions (very tedious)
 - Many functions, many variables
 If time permits, better organize better for clarity
 Solution: stuctures? Arrays?

Project Outlook

- Add asymptotic values of threshold energies needed to create new particles
- Unit conversions!!!
- Scenarios:

$$p + p \rightarrow p + p + \pi^0$$

- Neutral pion mass = 135 MeV
- Proton rest energy = 938 MeV
- CM frame: $v = \pm 0.36c$
- Lab frame (incoming proton): v = 0.64c

References

- Bitu, R. "Applications of Special Relativity on Particle Physics." http://teachers.web.cern.ch/teachers/archiv/hst2002/bubblech/mbit u/applications_of_special_relativi.htm
- Fowler, M. "Transforming Energy into Mass: Particle Creation." http://galileo.phys.virginia.edu/classes/252/particle_creation.html
- Taylor, John R. "Classical Mechanics". University Science Books. 2005