

Search for chargino and neutralino associated production with multileptons

Joint meeting of Pacific Regional Particle Physics Communities

October 26- November 3, 2006

Chargino and neutralino

- Chargino and neutralino associated production is a golden channel for SUSY:
 - -Final state with leptons and missing E_{T}

q

W*

W

The Tevatron at Fermilab

Run II: about 2 fb⁻¹ delivered to the experiments

Analysis presented are based on ≤1fb⁻¹

Overview

UNBIASED SEARCHES

CHANNEL	L (fb ⁻¹)	TRIGGER PATH	Like-sign dilepton:	
LS: e [±] e [±] ,e [±] μ [±] ,	1	High p _T Single Lepton	larger acceptance	
$\mu^{\pm}\mu^{\pm}$		\rightarrow	at low chargino	
P _T >20,10 GeV			111435 111435	
μ ℓ + e/ μ	0.75	High p _T Single Lepton		
P _T >20,5,5 GeV			Use e/mu only	
e ℓ + e/μ	1	High p _T Single Lepton	Very small	
P _T >20,8,5 GeV			backgrounds	
μμ + e/ μ	1	Low p _T Dilepton		
P _T >5, 5, 5			Dielectron + track: Sensitive to τ as 3 rd	
ee + track	1	Low p _T Dilepton	lepton \Rightarrow larger	
P _T >15, 5, 4			acceptance at	
			la ye tanp	

DPF2006

Daniela Bortoletto

Other selections

Understanding the SM Number of Events Major effort to investigate SM CDF Run II preliminary CDF data L=976 pb⁻¹ in control regions: 10^{3} DY+HF (stat) Low P_T di-Dilepton muon 10² Tri-lepton (low statistic) **Combination of data** 10 (misidentified leptons, HF) and MC (PYTHIA, etc.) 1 Search for $\chi_1^{\pm}\chi_2^0 \rightarrow \mu\mu + e/\mu$ n. dimuon events / 4 GeV/c 20 60 100 ō 40 80 120 140 DATA Dimuon Mass (GeV/c²), Opposite Sign dimuons Drell Yan 10³ Diboson ŧŦ 10² Ldt=745 pb⁻¹ HF estimated from data using • CDF RUN II Preliminary Hiah P 10 with large impact parameter di-miio muons $|d_0| > 0.2$ cm (no) or $|d_0|$ > 0.02 cm(with silicon hits) 10⁻¹ 10⁻² 80 100 120 140 160 180 200 0 20 40 60 $Z p_{T} (GeV/c)$

Background and systematics

Results

Analysis	L (fb ⁻¹)	Total predicted background	Obs- erved data	L in limit	ber of events		
e [±] e [±] ,e [±] μ [±] , μ [±] μ [±]	1	7.5±0.3	13	0.71 (9)	unu		
μμ +e /μ (low-p _T)	1	0.4±0.1	1	0.31 (0)			
ee+track	1	0.97 ± 0.28	3	0.61 (1)			
e ℓ + e/μ	1	0.73±0.09	0	0.35 (0)			
μμ +e /μ	0.75	0.64±0.18	1	0.75 (1)			
μ e +e /μ	0.75	0.78±0.15	0	0.75 (0)			
Combination is not yet available for the							

Combination is not yet available for the entire luminosity

CDF Run II Preliminary $M_0=100, M_{1/2}=180, \tan\beta=5, \mu>0$ 5 Data $L dt = 1.0 fb^{-1}$ ······ mSUGRA QCD 4 WW/ZZ Wγ WZ 3 Drell-Yan 2 1 0 20 40 50 60 70 80 90 100 110 30 Leading lepton transverse momentum (GeV/c)

Limit

- Combine all analyses to obtain a limit on the mass of the chargino in a mSugra-like scenario :
 - Equal slepton masses
 - •<u>Observed limit:</u> M(χ[±]₁) ~ 127 GeV/c² σxBR ~ 0.25 pb
- •<u>Sensitive</u> up to masses M(χ[±]₁) ~ 140 GeV/c² σxBR ~ 0.2 • pb

D0 limit in similar scenario: $M(\chi^{\pm}_{1}) > 140 \text{ GeV/c}^{2}$

Limit in msugra

- mSugra :
 - 1. M₀=scalar mass at GUT scale=60 GeV/c²
 - 2. M_{1/2}=Gaugino mass at GUT scale=160-200 GeV/c²
 - **3.** tan β =ratio of Higgs vev's=3
 - 4. A₀=trilinear coupling term=0
 - 5. sign μ= sign of Higgs mixing parameter>0
- Sensitive to chargino masses of ~ 116 GeV/c²
- Unable to exclude this region of parameter space with the current data
- In Standard mSugra the BR into taus is larger and the acceptance is lower

Conclusions

- Tevatron is starting to probe the region above LEP limit. Updated CDF combined limit almost ready
- Expect to probe chargino masses up to ~250 GeV/c² with ~8fb⁻¹ of data
- Tevatron will provide direction to the LHC searches

Low PT tri-muon

Di-lepton + track

LS dilepton event

The differences in the models

Jets Faking Leptons

