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Outline
● Introduction to the model(s)

– nlm w/ extra SU(2)’s

– More SU(2)’s = extra W’s and Z’s

● Loop corrections to self-energies, S and T

– R

 gauge-dependence?

– Unitary gauge  renormalizable?
● “Pinch” Technique...”one piece at a time”.

● Example: 3-site Higgs model 

– Chivukula et al., hep-ph/0607124(191)

– M. Perelstein, JHEP 0410:010, 2004

– Foadi et al., JHEP 0403:042, 2004



   

The Model(s)

● Gauge structure =         
     SU(2)n x U(1)

● nlm:

● mass mixing = “towers” of    
                 W’s/Z’s
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Coupling Fermions and Generic Feynman Rules

● Assume fermions only couple to SU
1
(2) and U(1)

● However, mass-mixing results in couplings of 
fermions to “new” triplets:
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Gauge-dependence of S and T?
● S and T written in terms of ∏

ij
’s:

● Contributions to ∏
ij
’s:

● Gauge-boson propagator:
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 Gauge-independent ???
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(e.g., see Degrassi &     
 Sirlin, NPB383(1992),73)



   

Non-renormalizable, too?

● Unitary gauge (  ): non-physical states 
decouple...fewer diagrams to calculate!

● As q  , D
i

  1...disaster for loop-diagrams!

● Self-energies develop q4 and q6 (non-
renormalizable) terms.

● Gauge-invariant & renormalizable S/T doomed?

● Consider 4-fermion scattering:

Gauge-invariant
and Renormalizable

Individually, gauge-dep.
and non-renormalizable



   

The Pinch Technique

● PT: isolate propagator-like, or pinch, 
contributions in vertex/box diagrams...e.g.,

“Pin
ch

”
Pinch terms carry the

exact  dependence and
q4/q6 dependence needed
to cancel “bad” terms in

two-point functions.



   

PT Self-Energies

● PT self-energy:

● Consider W self-energy:

● Two-pt. Function contains 3 types of diagrams:
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“ One Piece at a Time ”

● In particular, the poles:

● Organize in a “diagram-by-diagram” manner:

(Johnny Cash)
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Bloody Detail

● PT “diagrams”:
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Building the Self-Energies

● With the PT “diagrams”, we can construct gauge-
invariant* and renormalizable self-energies:

● For n=2 (SU(2) x SU(2) x U(1)):

(Blue = SM triplet + photon) (Red = “new” triplet)



   

Results for a 3-site Higgs Model...again

● Apply our results to the deconstructed 3-site 
Higgs model (with “localized” fermions).

● Large mass limit: 

● Leading chiral-logs:

● Notation: 
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S and T in the 3-site Higgs Model

● The S parameter: 

● In the large mass limit, we find:

● For the T parameter:
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Chiral Log Contributions to S

● Subtract Higgs
  piece:

● Tree-level
  contribution:

● Bound on S for   
  TC-like models:
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Summary

● Gauge boson contributions to EW corrections 
contain non-trivial R


 gauge-dependence.

● Also, in the Unitary gauge, two-point functions 
are non-renormalizable.

● Pinch Technique: combine propagator-like terms 
from Vertex/Box corrections with traditional 
SE’s.  

● PT self-energies and, thus, S and T are gauge-
invariant and renormalizable quantities.

● 3-site Higgs Model (with localized fermions): 
sizeable one-loop corrections to S, while 
contributions to T decouple.

(Special Thanks to Sekhar and Shinya)



   

The Rest of the SE’s
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3-site Higgs Model

● nlm based on SU(2)3  SU(2) (Custodial) 

● Gauged sub-group: SU(2) x SU(2) x U(1)

● Symmetry breaking achieved by 2  fields:

● ’s acquire vev’s:

● M
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● Also, must add higher-derivative terms 
(parameterize strongly-coupled physics):  
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