Testing Acoustic Transducers for the PICASSO32 Dark Matter Experiment

Nate Vander Werf
Indiana University South Bend

Supported in part by:
- NSF Grant 0555472
- IU South Bend
The PICASSO Collaboration

Project in Canada to Search for Supersymmetric Objects

Université de Montréal, Canada

U. Wichoski,
Laurentian University

Queens University, Canada

J. Bocan, S. Pospisil, J. Sodomka, I. Stekl

IEAP-Czech Technical University in Prague, Czech Republic

E. Behnke, W. Feighery, I. Levine, N. Vander Werf
Indiana University South Bend, USA

F. d’Errico
Yale University, USA

S. Kanagalingam and R. Noulty
Bubble Technology Industries, Canada

MOU with Universidade de Lisboa, Université Paris 6 & 7
(SIMPLE Collaboration)
Phase Transition

- Bubble Formation! Liquid Phase \rightarrow Gas Phase (500x bigger!)
 \Rightarrow Shock Wave/Sound Wave
 $\frac{1}{2}$ Energy released acoustically

C4F10
Motivation for testing transducers

• Find and eliminate transducers that fail early
• Characterize how the acoustic transducers respond as a function of temperature.
• Find any difference in the response over a large number of temperature cycles.
• To test the transducers, IUSB has built an environment chamber
Building the piezo acoustic transducers for the PICASSO32 Detectors

PICASSO32 transducers under construction.

Right: transducers mounted on a PICASSO32 detector
IUSB’s Environment Chamber

- Tube: Location of Sounding Block
- Switch Box: 12 inputs, 4 outputs, and 3 channel switch designed to minimize electric noise (Faraday Cage)
- Air Blast: used as a white noise source coming out under the sounding block.
- Oscilloscope: Capture FFT and Waveforms
 2014 TDS
- Voltage Supply
- Air Conditioner (temperature cycling)
- Heater (temperature cycling)
- Aluminum Bar (sounding block)
 Transducers are coupled to this using disc break grease
- Temperature cycle from 0°C-60°C in less than an hour
- Holds up to 12 acoustic transducers.
- 12 full cycles per day
Temperature Characterization of Environment Chamber for one full 2 hour cycle
Air spray tests done before and after epoxy is poured into transducer
Preliminary investigations of pouring epoxy

- Pouring epoxy seemed to slightly decrease the amplitude of the response at the resonant frequency of 120 kHz
- The resonant frequency has been shifted to slightly smaller frequencies by a small amount
Air spray tests before and after temperature cycling
Preliminary investigations of temperature cycling

- The acoustic response of the transducer seemed to decrease slightly from temperature cycling.
- The shift on the resonant frequency is unclear.

![Graph showing acoustic response comparison before and after cycling.](chart.png)
Response of transducers at room, low, and high temperatures before temperature cycling

- Room Temp
- Cold Temp (~5°C)
- Hot Temp (60°C)
Response of transducers at room, low, and high temperatures before temperature cycling

- From 0-120 kHz, there are no dead regions where the transducer lost all response at different temperatures.
- In some transducers, there is a loss of response at most frequencies at high temperature. This could be due the coupling running off as the temperature is increased.
Response of transducers at room, low, and high temperatures after temperature cycling

- **Room Temp**
- **Cold Temp** (~5°C)
- **Hot Temp** (60°C)
Response of transducers at room, low, and high temperatures after temperature cycling

- From 0-120 kHz, there are still no dead regions anywhere at all temperatures after temperature cycling.
- In some transducers, there is a loss of response at most frequencies at high temperatures. This could be due the coupling running off as the temperature is increased.
Plans for Future

- We plan to continue to test different couplants.
- We will build rings on the sounding board to keep the couplant from running off the transducer.
- We plan to disassemble and reassemble the air blast fixture, and see if this has any effect on the response of the transducers.
- We will continue temperature cycling these transducer to find any failures and to investigate any decrease in response from more temperature cycling.