Alexander Golossanov Fermilab for CDF and D0 Collaborations

Combined Measurement of Top Quark Mass from Tevatron

November 01, 2006 DPF+JPS Meeting Honolulu, Hawaii

DPF2006, Alexander Golossanov [Fermilab]

● First ● Last ● Prev ● Next ● Back ● Forward ● Full Screen ● Close ● Quit ● Page 1 of 34

1. The outline

- **1** Imortance of precise m_t value
- 2 Measuring m_t at the Tevatron
- **3** Single most precise m_t measurement to date
- 4 Combining 11 best m_t measurements
- **5** Results, conclusions and outlook

m_t is important detail of Standard Model and beyond 2.

Higgs mass range is extremely sensitive to the m_t precision

DPF2006, Alexander Golossanov [Fermilab]

● First ● Last ● Prev ● Next ● Back ● Forward

3. Direct m_t measurements come only from Tevatron

4. Jet combinatorics and missing ν 's complicate reco

- ★ many possible combinations when assigning jets to partons, but only one is correct
- \star deduce escaping ν 's from missing E_T [MET]
- ★ will focus on letpon+jets channel in this talk
- ★ b-quark ID helps reduce combinatorics and backgrounds...

5. Lifetime of b-quark helps its identification

- ★ can reconstract secondary decay vertex from b-quark
- ★ significantly reduces combinatorial and other backgounds
- \star improves overall m_t sensitivity

6. Measuring m_t at Tevatron is possible, but not easy

- not just a calculation of trijet invariant mass
- 2 quarks turn into hadronic jets through complicated process
- **3** additional jets from gluon radiation

thus must have excellent energy corrections and good modeling of gluon radiation

4

● Full Screen ● Close ● Quit

• Page 7 of 34

7. Jet energy scale corrections and calibration

- **1** In order to obtain parton enrgies, multiple corrections applied to jet energies to account for instrumental, physical and reconstruction effects.
- 2 In situ $W \rightarrow jj$ calibration adds crucial correction and allows precision measurement of m_t . JES uncertainty now scales with statistics.

8. m_t measured in all channels using many methods

Template. For each event choose best reconstracted m_t using overcontrained kinematic fit. Obtain probability using MC templates for different hypophetical masses. Get m_t using maximum likelihood fit

Matrix Element / Dynamic Likelihood. Similar to a method originally suggested by Kunitaka Kondo [J.Phys.Soc.JpnG62:1177,1993] and Dalitz and Goldstein [PRD45:1531,1992, PLB287:225,1992] and first used by Gaston Gutierez et al in D0 [Nature429:638,2004]. Probability for each event is calculated using LO matrix element for $t\bar{t}$ production and decay [talks by P. Lujan and C. Garcia, plus more in this talk...]

Ideogram. First used at LEP [Eur.Phys.J.C2:581,1998] for m_W measurement. Combines features of two methods above. Each event weighted with χ^2 probablity of kinematical fit and event probability

4 Recently proposed by Chris Hill et al in CDF. Lorentz boost given to b-quark in top decay is proportional to m_t . Measuring transverse decay lenngh L_{xy} of b-hadrons from top decay gives m_t

Dilepton assumes $\eta(\nu)$, $\phi(\nu)$, $p_z(t\bar{t})$ to deal with 2 missing ν 's [talks \star by T. Maki, B. Jayatilaka and J. Temple]. Alljets employs neural network to reduce huge background [F. Margaroli's talk]

1

2

- 9. Recap
 - **1** Imortance of precise m_t value
 - **2** Measuring m_t at the Tevatron
 - 3 Single most precise m_t measurement to date
 - 4 Combining 11 best m_t measurements
 - **5** Results, conclusions and outlook

●Full Screen ●Close ●Quit

Page 10 of 34

10. Comes from CDF matrix element technique analysis

- Maximize kinematic and dynamic information
- Calculate a probability per event to be signal or background as a function of the top mass
- Signal probability for a set of measured jets and lepton (x)

$$P(x;M_{top},JES) = \frac{1}{\sigma} \int dq_1 dq_2 f(q_1) f(q_2) \ d\sigma(y;M_{top}) \ W(x,y,JES)$$
Differential cross section:
LO ME (qq->tt) only
Transfer function: probability
to measure x when parton-level
y was produced

- JES is a free parameter, constrained in situ by mass of the W
- Background probability is similar, but no dependence on M_{top}

$$L(f_{top}, M_{top}, JES) \propto \prod_{i}^{Nevents} (f_{top} P_{top,i}(M_{top}, JES) + (1 - f_{top}) P_{bkgd,i}(JES))$$

● First ● Last ● Prev ● Next ● Back ● Forward

● Full Screen ● Close ● Quit

Page 11 of 34

DPF2006, Alexander Golossanov [Fermilab]

11. Transfer function

- Detector resolution modeled with "transfer functions" using Monte Carlo
- HERWIG/PYTHIA generation and parton showering
- GEANT detector simulation
- Probability of jet with energy E^{jet} originating from a parton with energy E^{parton}.

$$W_{jet}(\delta, E^{parton}) = \frac{1}{\sqrt{2\pi}p_2 + p_3p_5} \left[\exp\left[\frac{-(\delta - p_1)^2}{2p_2}\right] + p_3 \exp\left[\frac{-(\delta - p_4)^2}{2p_5}\right] \right]$$

$$\delta \equiv E^{parton} - E^{jet}, p_i = a_i + b_i E^{parton}$$

12. CDF lepton+jets signal selection and acceptance

- ★ lepton: $E_T > 20$ GeV (electron), $p_T > 20$ GeV/c (μ)
- \star 4 jets: $E_T > 15$ GeV, $|\eta| < 2.0$
- **★** missing E_T : $\not E_T > 20$ GeV
- **\star** *b*-tag: \geq 1 from secondary vertex
- ★ non-W veto: $\Delta \phi < 0.5$ or $\Delta \phi > 2.5$ ($E_T < 30$ GeV)

[See E. Thomson's talk for selection details]

CDF Run II Preliminary

- **1** Relative to $m_t = 175 \ GeV$ and JES=1, acceptance varies by about $\pm 50\%$ over relevant range
- **2** Important to account for this when forming likelihood function
- **3** Used Pythia MC samples at 5 GeV intervals from 130-230 and interpolated between intermediate points

13. Backgounds are well understood and simulated

★ Fractions were scaled from 695 pb^{-1} to 940 pb^{-1}

\star Important for checking the method, but not used in m_t measurement

● First ● Last ● Prev ● Next ● Back ● Forward ● Full Screen ● Close ● Quit ● Page 14 of 34

14. Data is well described by signal and background MC

DPF2006, Alexander Golossanov [Fermilab]

● First ● Last ● Prev ● Next ● Back ● Forward ● Full Screen ● Close ● Quit ● Pa

Page 15 of 34

15. Pseudo-experiments prove that ME method works well

- ★ Pseudo-experiments were generated using signal and backgrouns MC mixed appropriately. This studies prove that:
- **1** estimator has no bias
- **2** method is consistent and robust
- **3** statistical uncertainty has Gaussian nature

 \Rightarrow can apply to data

DPF2006, Alexander Golossanov [Fermilab]

● First ● Last ● Prev ● Next ● Back ● Forward ● Full Screen ● Close ● Quit ● Page 16 of 34

Maximum likelihood fit result 16.

$$egin{array}{ll} m_t &= 170.9 \pm 2.1 (stat + \ J\!E\!S\,) \ GeV^2/c^2 \ m_t &= 170.9 \pm 1.6 (stat) \ GeV^2/c^2 \end{array}$$

2
$$JES = 0.99 \pm 0.02(stat)$$

160

CDF Preliminary 940 pb⁻¹

JES⁻¹

1.05

0.95

CDF Run II Preliminary (940 pb⁻¹)

0.2

17. Comlete m_t result and its systematic uncertainties

 $egin{aligned} & [170.9 \pm 2.1(stat + JES) \pm 1.4(syst)] \; GeV/c^2 \ & [170.9 \pm 1.6(stat) \pm 1.9(JES + syst)] \; GeV/c^2 \ & [170.9 \pm 2.5 \; GeV/c^2] \; GeV/c^2 \end{aligned}$

 \Rightarrow Best single measurement in the world!

Source of uncertainty	CDF Magnitude (GeV/c²)
b-JES	0.6
Signal (Initial and final state radiation, parton distribution functions)	1.1
Background (composition and shape)	0.2
Fit (Method, Monte Carlo statistics)	0.4
Monte Carlo (Modeling of ttbar)	0.2
Total	1.4

18. I showed the best, but one of many...

19. Example of original new method: L_{xy}

- Uses the average transverse decay length, Lxy of the b-hadrons
- > B hadron decay length \propto b-jet boost \propto M_{top} (>=3jets)

20. **Recap**

- **1** Imortance of precise m_t value
- **2** Measuring m_t at the Tevatron
- **3** Single most precise m_t measurement to date
- 4 Combining 11 best m_t measurements
- **5** Results, conclusions and outlook

21. Combine measurements to reduce σ_{m_t}

[see arXiv:hep-ex/0608032 for details]

●Full Screen ●Close ●Quit

22. Combination method

- Best Linear Unbiased Estimator (BLUE)
 - L.Lyons, *et al.*, NIM A270 (1988) 110.
 - A.Valassi, et al., NIM A500 (2003) 391.
- Returns a weighted average, including breakdown of uncertainties by input category
- Results cross-checked with a MINUIT χ^2 minimization
- Was used for final (CDF+D0) Run-I average and all world averages since then

23. Must decide on error categories

★ Jet energy scale:

- aJES: *D*0 Run II e/h calibration
- **bJES**: JES uncertainties specific to b-jets
- cJES: fragmentation and OOC showering
- **dJES**: correlated within experiment but not between RunI&II
- iJES: in-situ calibration from Wjj
- rJES: remaining JES
- ★ Signal: signal modeling (ISR, FSR, PDF)
- *** Bgd**: background normalizatin and shape
- **\star UN/MI**: D0 Run I uranium noise and MI
- ★ Fit: fit method, finite MC sample size
- ★ MC: Pythia vs Herwig (vs ISAJET)
- ★ Statistical: limited data size

24. All uncertainties were carefully categorized

	Run-I published				Run-II preliminary						
		CDF		D	Ø	CDF		DØ			
	all-j	l+j	di-l	l+j	di-l	l+j	di-l	all-j	lxy	l+j	di-l
Lumi (pb^{-1})	110	105	110	125	125	955	1030	1020	695	370	370
Result	186.0	176.1	167.4	180.1	168.4	170.9	164.5	174.0	183.9	170.3	178.1
iJES	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0
aJES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.5
bJES	0.6	0.6	0.8	0.7	0.7	0.6	0.6	0.5	0.0	0.6	1.4
cJES	3.0	2.7	2.6	2.0	2.0	0.0	2.8	3.1	0.0	0.0	0.0
dJES	0.3	0.7	0.6	0.0	0.0	0.2	1.6	0.8	0.0	3.5	3.8
rJES	4.0	3.4	2.7	2.5	1.1	0.0	1.3	3.0	0.3	0.0	0.0
Signal	1.8	2.6	2.8	1.1	1.8	1.1	0.9	0.9	1.4	0.5	1.7
BG	1.7	1.3	0.3	1.0	1.1	0.2	0.7	0.7	2.3	0.5	1.0
Fit	0.6	0.0	0.7	0.6	1.1	0.4	0.9	0.0	4.8	0.5	0.9
MC	0.8	0.1	0.6	0.0	0.0	0.2	0.9	1.0	0.7	0.0	0.0
UN/MI	0.0	0.0	0.0	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0
Syst.	5.7	5.3	4.9	3.9	3.6	1.9	3.9	4.7	5.6	3.8	4.8
Stat.	10.0	5.1	10.3	3.6	12.3	1.6	3.9	2.2	14.8	2.5	6.7
Total	11.5	7.3	11.4	5.3	12.8	2.5	5.6	5.2	15.8	4.5	8.3

25. Must decide on correlations

- Uncorrelated: Stat, Fit, iJES
- Correlated across all inputs
 - in same run: dJES
 - in same channel: Bgd
 - everywhere: Signal, bJES, cJES, rJES, MC
- Correlation taken to be 0 or 100%
 - Variations considered as part of cross-checks

26. Combination result

DPF2006, Alexander Golossanov [Fermilab]

● First ● Last ● Prev ● Next ● Back ● Forward ● Full Screen ● Close ● Quit ● Page 27 of 34

27. Cross Checks

- Repeated combination with these variations
 - Used each extreme of asymmetric stat uncertainty
 - Varied ρ (LJT-Lxy) by +/- 5% for their stat errors
 - Varied correlations among all inputs by 10% for bJES, cJES, rJES, Signal, MC, and Bgd simultaneously
 - Varied treatment of Run I uncertainties
- Central value and total uncertainty both affected by <100 MeV/c² level in all cases

28. Results are consistant among the channels

Parameter	Value (GeV/ c^2)	Correlations			
$M_{\rm t}^{\rm all-j}$	173.4 ± 4.3	1.00			
$M_{\rm t}^{\rm l+j}$	171.3 ± 2.2	0.29	1.00		
$M_{\rm t}^{\rm di-l}$	167.0 ± 4.3	0.46	0.37	1.00	

DPF2006, Alexander Golossanov [Fermilab]

● First ● Last ● Prev ● Next ● Back ● Forward ● Full Screen ● Close ● Quit ● Page 29 of 34

29. $m_t = 171.4 \pm 2.1~GeV^2/c^2$: lighter Higgs and SUSY

 $m_{H} = 85^{+39}_{-28} GeV/c^{2} (68\% CL)$ $< 166 GeV/c^{2} (one sided 95\% CL)$ $< 199 GeV/c^{2} (95\% CL, if LEP2 limit of 114 GeV included) (1)$

30. Bright prospects for m_t ...

New combined result exceeds Run II TDR goal already!

1

3

4

Adding JES to alljets may result in sensetivity comparable to leptop+jets

Tevatron perfomance and combination of results from CDF and D0 will reduce uncertainty even further

Tevatron Run II result is expected to achieve uncerainty of about 1 *GeV*

31. ... but improvements are required

- **1** Will have to improve understanding of systematic uncertainties
- **2** Similar to m_W measurement at LEP 2
- **3** Real precision measurement at hadron collider!

DPF2006, Alexander Golossanov [Fermilab]

● First ● Last ● Prev ● Next ● Back ● Forward ● Full Screen ● Close ● Quit ● Page 32 of 34

32. How large are these QCD effects?

DPF2006, Alexander Golossanov [Fermilab]

● First ● Last ● Prev ● Next ● Back ● Forward ● Full Screen ● Close ● Quit ● Page 33 of 34

33. Summary and outlook:

1

2

4

New world average combines Tevatron Run I and best recent Run II measurements with up to 1 fb^{-1} of data [$\sigma_{m_t} / m_t \approx 1.2\%$!]

 $m_t \, = 171.4 \pm 2.1 \ GeV^2/c^2$

New single most accurate measurement from CDF dominates the world average

$$m_t\,=170.9\pm 2.5~GeV^2/c^2$$
 .

Expect to approach $\sigma_{m_t} \sim 1 \ GeV$ in combined precision if Tevatron provides more data and physicists improve their understanding of systematics: challenging even at LHC!

New m_t and m_W values hint lighter Standard Model Higgs... and lighter Higgs is easier to find at Tevatron!

$$\Rightarrow \ m_{H}^{SM} \ = \ 85^{+39}_{-28} \ GeV\!/c^2$$

DPF2006, Alexander Golossanov [Fermilab]