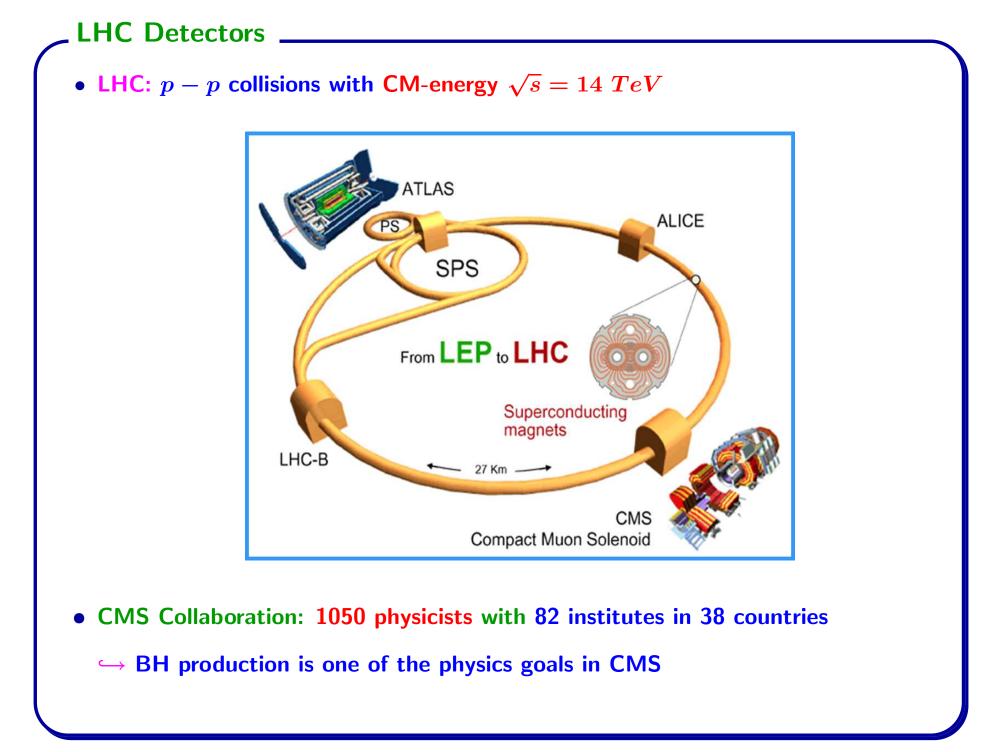
CATFISH: Black Hole Simulation at CMS

Romulus Godang University of Mississippi–Oxford

APS-DPF2006 + JPS2006 10/31-11/03, 2006 Honolulu, Hawaii

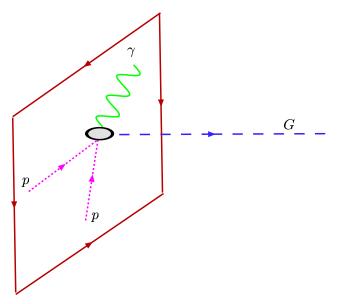
On behalf of (M. Cavaglià, R. Godang, L. Cremaldi, D. Summers)


APS-DPF2006 + JPS2006 10/31-11/03, 2006 Honolulu, Hawaii

CATFISH: Black Hole Simulation at CMS (page 1)

Romulus Godang University of Mississippi–Oxford

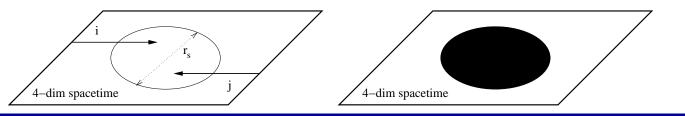
Introduction ____


- The observable astronomical BH encourages us to explore miniature BH production in laboratories
- BH production in laboratories could be the most promising signal of TeV-scale quantum gravity
- Much effort has been made to predict BH production in fundamental Planck scale of $M_{\star} \sim \!\! 1 \; {
 m TeV}$
- Such BH formation could be experimentally observed at the LHC detectors, such as CMS and ATLAS
- This talk is mainly focused on a new MC simulation of BH that is currently available to use

Extra Dimensions

• In large extra dimensions at the TeV energy scale,

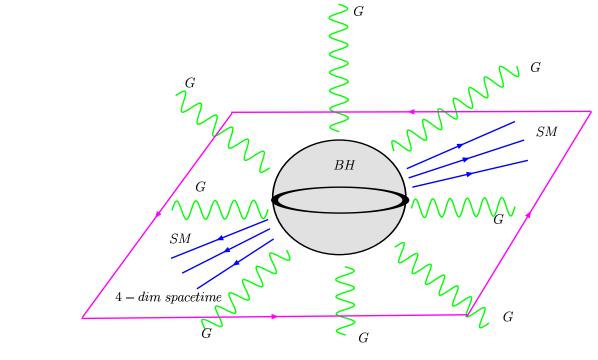
Gravitons can propagate in the n = D - 4 extra dimensions



• The BH is characterized by the Schwarzschild radius

$$r_s = rac{1}{\sqrt{\pi}M_\star} \left[rac{8\Gammaig(rac{n+3}{2}ig)}{(2\!+\!n)}
ight]^{rac{1}{n+1}} \left(rac{M_{BH}}{M_\star}
ight)^{rac{1}{n+1}}$$

o $M_{\star} \sim TeV$ is fundamental Planck scale


• If the impact parameter $b < r_s$, ightarrow an Event Horizon is formed

Romulus Godang University of Mississippi–Oxford

Hawking's Evaporation

- After Black Hole formed it will decay via Hawking evaporation process (Hawking radiation)
- The Black Holes emits into two modes :
- 1. Along the brane (brane mode): Standard Model fields
- 2. Into the extra dimensions (bulk mode): gravitons (invisible)
- Hawking radiation

Romulus Godang University of Mississippi–Oxford

Cross Section Calculation

• BH cross section can be estimated from the geometrical cross section (Black Disk)

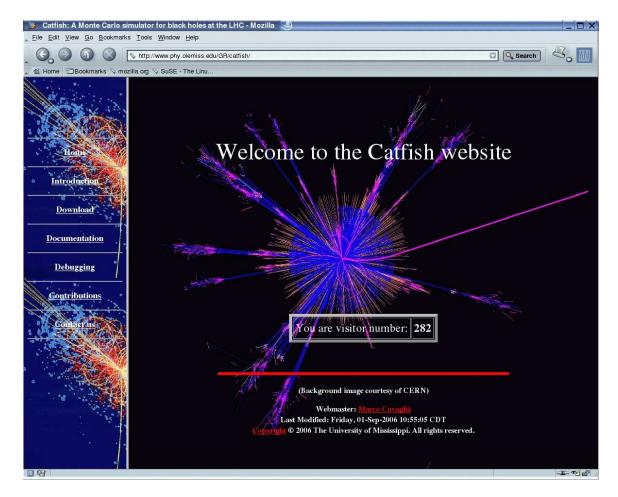
$$\sigma_{ij
ightarrow BH} pprox \pi r_s^2 = rac{1}{M_\star^2} \left[rac{M_{BH}}{M_\star} \left(rac{8\Gamma \left(rac{n+3}{2}
ight)}{(2+n)}
ight)
ight]^{rac{2}{n+1}}$$

• LHC (p - p collider), we need to consider its cross section at the parton level (hampered by parton distributions)

 $\sigma_{pp o BH} pprox \sum_{ij} \int_{x_m}^1 dx \int_x^1 rac{dy}{y} f_i(y,Q) f_j(x/y,Q) \sigma_{ij o BH}(x,s,n)$

 $\circ x_m = M^2_{BH(min)}/s$, $s = M^2_{\star}$ and Q = the momentum transfer

- f_i , f_j = Parton Distribution Function (PDF)
- At CLIC ($e^+ e^-$ collider), beamstrahlung smears the collision energy unlike Muon Collider
- At Muon Collider ($\mu^+ \mu^-$ collider), the BH cross section is relatively simple

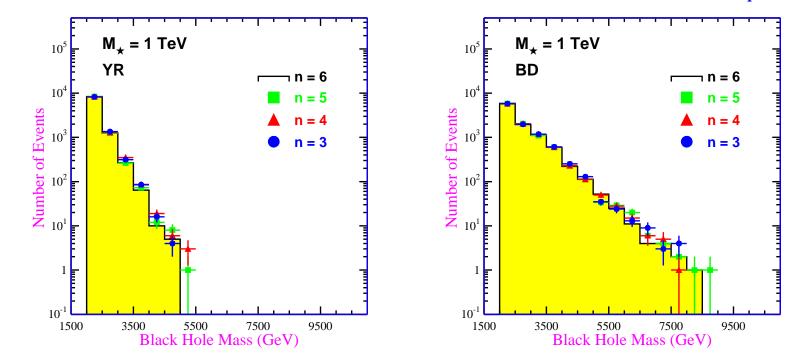

 $\sigma_{\mu\mu o BH} pprox \sigma_{BH}(s,n)$

(it does not depend on the minimum M_{BH})

CATFISH: New MC Generator _____

- We introduce a new MC generator so called CATFISH CATFISH (Collider grAviTational Fleld Simulator for black Holes)
- New features of CATFISH compared to other BH generators :
- CATFISH is more flexible and user friendly
- It includes different final BH decay modes with possibility of remnant formation either charged or neutral
- o It includes Graviton field emissivities
- The missing energy is not only due to the neutrinos but also Gravitons, BH remnant and inelastic effect during BH formation
- CATFISH is available with PYTHIA interface at the moment we plan to add HERWIG interface in the future version

CATFISH Website

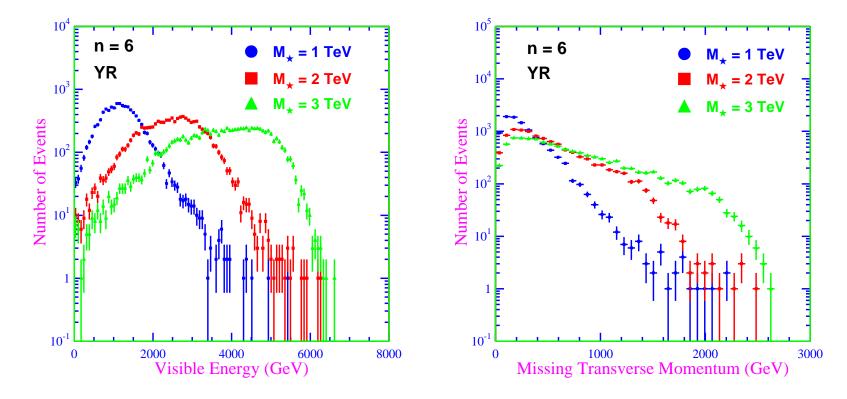

- CATFISH is well documented and available for public http://www.phy.olemiss.edu/GR/catfish/
- CATFISH authors: M. Cavaglià, R. Godang, L. Cremaldi, D. Summers

CATFISH: New MC Generator...

- CATFISH has been submitted to JHEP with arXiv:hep-ph/0609001
- The physics of BH is determined using a set of external parameters :
- Fundamental Planck scale (M_{\star})
- Number of large extra dimensions (n)
- Gravitational loss at formation
- Minimum BH mass at at formation (M_{min})
- Quantum BH mass threshold at evaporation (Q_{min})
- Number of quanta at the end of BH decay (n_p)
- Minimum space time length (α)...etc
 - \hookrightarrow All parameters are listed in a single input file
- The CATFISH pre-compiled code is available in Linux and Mac

BH Mass

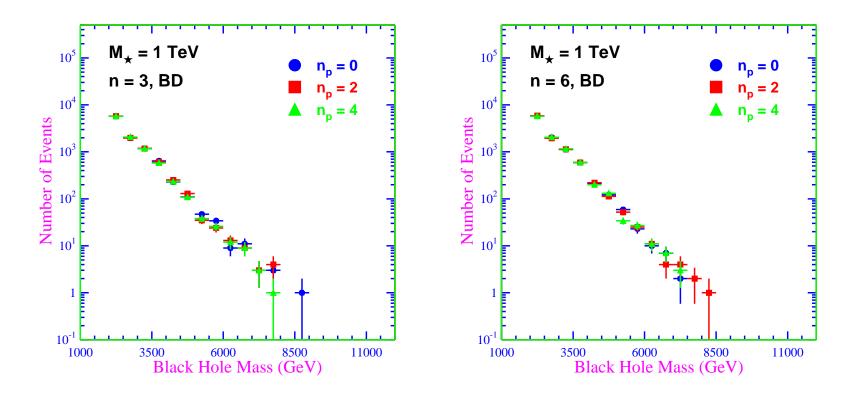
• BH Mass distribution for fundamental Planck scale $M_{\star}=1$ TeV, $n_p=2$



• n = D - 4 extra dimensions (3,4,6,..)

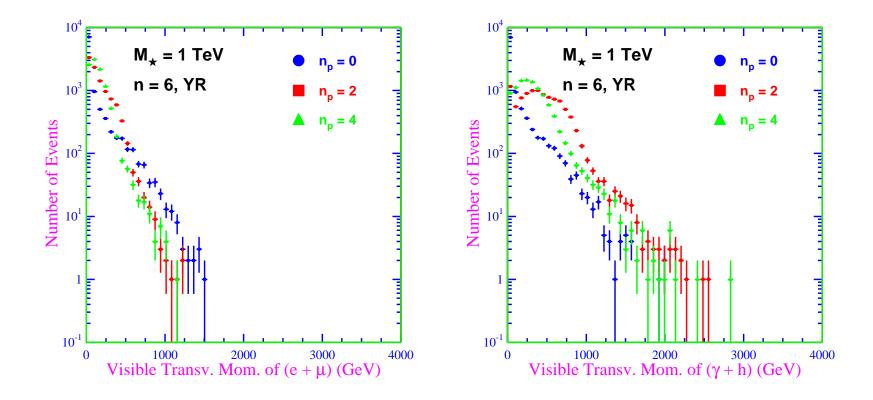
- (left) Black Disk model (BD) \implies no Gravitons loss
- (right) Yoshino-Rychkov TS model (YR) \implies with Gravitons loss
- The YR (BD) model is considered as lower (upper) bounds on M_{BH} $\hookrightarrow M_{BH}$ depends on the impact parameter

Effects of Fundamental Scale


• Visible energy and missing transverse momentum for n = 6, $n_p = 4$, YR

- Increasing M_{\star} leads to higher M_{min} ($M_{min}=2M_{\star}$) :
 - Larger visible energy in Hawking phase
 - Larger missing transverse momentum
- If BHs are observed at LHC $\Longrightarrow M_{\star}$ could be measured to a certain degree of precision

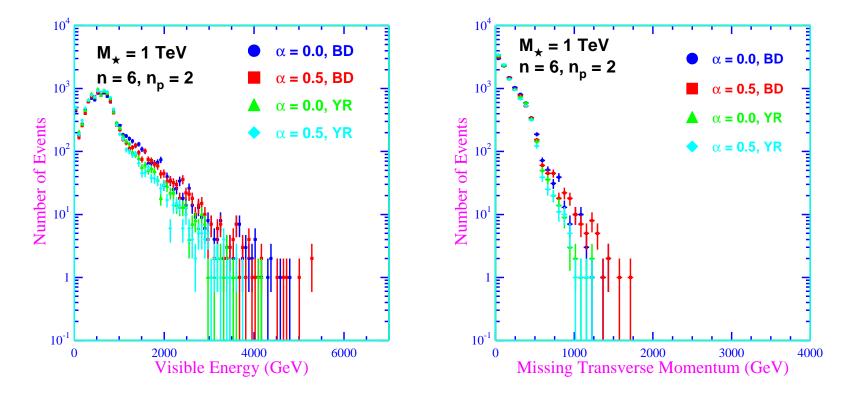
Effects of Final BH Decay


• BH Mass distribution for $M_{\star} = 1$ TeV, (n =3, 6), BD

- The initial BH mass is obviously unaffected by the detail of final decay
- \circ (left) We vary number of quanta at the end of BH decay for n = 3
- (right) We vary number of quanta at the end of BH decay for n = 6
- This is a nice consistency check of CATFISH code

Effects of Final BH Decay...

• Visible Transverse Momentum for $M_{\star} = 1$ TeV, n = 6, YR

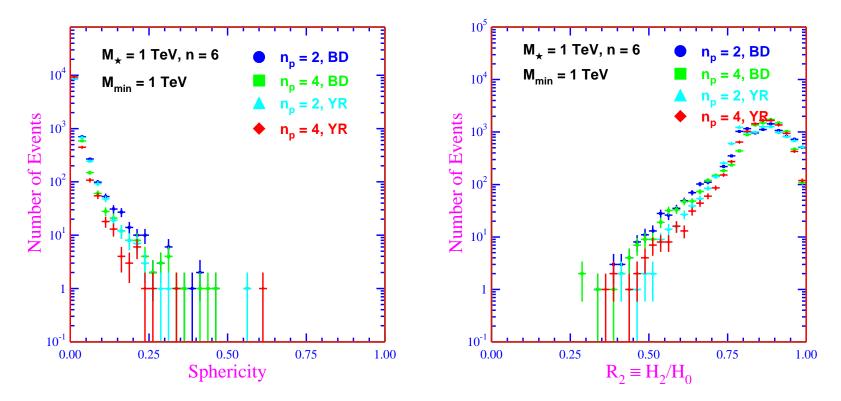


- Quanta emissivities in Hawking phase are different wrt n_p
- (left) Visible transverse momentum of $(e + \mu)$
- (right) Visible transverse momentum of (γ + hadron)

← Experimentally it is almost impossible to distinguish between models

Effects of Minimum Spacetime Length

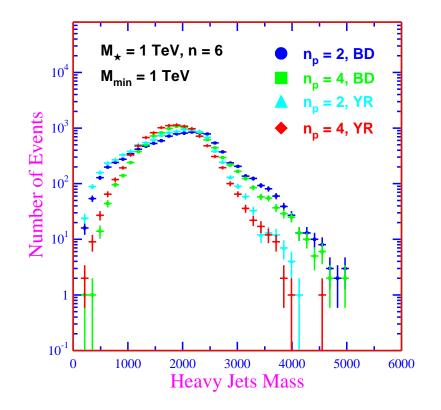
• Visible energy and missing transverse mom. for n = 6, $n_p = 2$, $\alpha = 0$, 0.5



- The effect of a small distance cut-off shows no significant differences in :
- (left) total visible energy
- (right) total missing transverse momentum
- To observe of minimum length effects at LHC \implies needs a fine tuning in α

BH Events Shape

• BH events are expected to be highly spherical due to


the spherical nature of Hawking evaporation process

- Experimentally one needs to distinguish between BH events shape with $q\bar{q}$ events as BH-background (back-to-back events shape)
- \circ (left) Sphericity BH events shape, ightarrow S > 0.30 (depends on M_{min})
- (right) Fox-Wolfram moment, $ightarrow R_2 < 0.50$

Jets Mass

• Heavy jets mass distribution

- This plot includes initial and final state radiation BD model produces more massive BH than YR model (on average)
 - $\circ~$ Right portions of heavy jets mass $\rightarrow~$ BH evaporation
 - \circ Left portions of heavy jets mass \rightarrow BH final decay

Summary

- CATFISH produces consistent results compared to the other generators It has some new features and is user friendly
- The initial BH mass is obviously unaffected by the detail of final decay
- The YR (BD) model is considered as lower (upper) bounds on M_{BH} $\hookrightarrow M_{BH}$ depends on the impact parameter
- If BHs are observed at LHC $\hookrightarrow M_{\star}$ could be measured to a certain degree of precision \hookrightarrow New discoveries are waiting to be explored !
- BH events show a highly spherical shape as we expected
- Heavy and light jets mass show a consistency of BH signature
- All BH signatures are consistent with CATFISH results