Recent Results from the MINOS Experiment

Mark Dierckxsens Brookhaven National Laboratory DPF2006, Oct 29 – Nov 03, 2006

Introduction to the MINOS Experiment

Mark Dierckxsens

MINOS Physics Goals

- ightharpoonup Test $v_{\mu}
 ightharpoonup v_{\tau}$ oscillation hypothesis
 - → Measure precisely $|\Delta m^2_{32}|$ and $\sin^2 2\theta_{23}$
- ho Search for sub-dominant $\nu_{\mu} \rightarrow \nu_{e}$ oscillations
 - → see talk M. Sanchez
- Search for or constrain exotic phenomena
 - → Sterile v, v decay
- \checkmark Compare \lor , $\overline{\lor}$ oscillations
 - → Test of CPT violation
- Atmospheric neutrino oscillations
 - → Phys. Rev. D73, 072002 (2006)

$$\begin{vmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{vmatrix} = \begin{vmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{vmatrix} \begin{vmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{vmatrix}$$

<u>Useful Approximations:</u>

 $\nu_{_{\mu}}$ Disappearance (2 flavors):

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \frac{\sin^2 2\theta_{23}}{\sin^2 (1.27 \Delta m_{32}^2 L/E)}$$

v_e Appearance:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(1.27\Delta m_{31}^{2}L/E)$$

Units: Δm^2_{32} (eV²), L(km), E(GeV)

Long Baseline Concept

- ightharpoonup Generic long baseline v_{μ} disappearance experiment
- Predict unoscillated charged current (CC) spectrum at Far Detector (fixed L)
- Compare with measured Energy spectrum to extract oscillation parameters

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2 (1.267 \Delta m^2 L/E)$$

MINOS Experiment

- ν High intensity $ν_μ$ beam produced by 120 GeV protons from the Main Injector at FNAL
- ✓ compare energy spectrum:
 near detector ⇔ far detector
 1km 735km
 unoscillated ⇔ oscillated

NuMI Beamline

- ✓ movable target ⇒ variable beam energy
 - → graphite, 47 segments, 6.4x15x20mm³

- \checkmark 2 magnetic focusing horns ⇒ \lor or \checkmark beam
 - → parabolic, pulsed, 200kA, 3T field

NuMI Neutrino Beam

- ∠ LE-10 configuration is most favorable for oscillation analysis and constitutes ~95% of total exposure
 - → Data in 5 other configurations for systematic studies
- \sim LE-10 event composition: 92.9% ν_{μ} , 5.8% $\overline{\nu}_{\mu}$, 1.3% ν_{e} / $\overline{\nu}_{e}$

*Events in fiducial volume

^{**}pot=Protons-on-target

1st year of NuMI Running

Detector Technology

Near and Far detector functionally identical:

- √ 4.1x1cm² scintillator strips
- consecutive planes have orthogonal strips
- optical readout: multi-channel PMTs
- ✓ GPS timestamps

MINOS Detectors

1	mass (kt)	5.4
3.8x4.8	plane size (m²)	8x8
282/153	# steel/scint pl.	486/484
front: all pl. instrumented		veto shield for cosmics
back: 1/5 pl. instrumented	specifics	8x optical multiplexing
fast QIE electronics		

10

Calibration

- Light injection: PMT gain
- ho cosmic ray μ : strip-to-strip, inter-detector
- calibration detector: overall energy scale
 - → 'mini-MINOS' at CERN test beam
 - → measured e/μ/π/p response

Hadrons: 56% / √E ⊕ 2%

Electrons: 21% / √E ⊕ 4% / E

→ see poster J. de Jong

ν_{μ} Charged Current Event Selection

Event Topologies

- \checkmark long track (μ)
- hadronic activity near vertex
- ✓ short event
- ✓ often diffuse

- ✓ short event
- EM shower profile

$$E_{\nu} = E_{shower} + P_{\mu}$$

 $\sigma(E_{\text{shower}})$: 55%/ \sqrt{E}

 $\sigma(P_{\mu})$: 6% range; 13% curvature

Pre-selecting v_{μ} CC Events

- beam and detector monitoring quality cuts
- ✓ pre-selection:
 - → at least one good reconstructed track
 - → only select fitted tracks with negative charge
 - → fiducial volume cuts on vertex:
 - \times ND: 1m < z < 5m; r < 1m w.r.t. beam center
 - × FD: z > 50cm from edge, z > 2m from end; r < 3.7m

Selecting v₁ CC Events

Input variables for PDF-based event selection

Event classification parameter defined as:

$$PID = -\sqrt{-\log P_{CC}} + \sqrt{-\log P_{NC}}$$

Select CC-like events:

- Select CC-like events:
 - x PID>-0.2 in FD
 - x PID>-0.1 in ND

Near Detector Distributions

- event rate flat over time
 - * deviations due to different running conditions
- distributions well reproduced by Monte Carlo
- →see D. Naples talk on ND physics

BROOKHAVEN NATIONAL LABORATOR

Near Detector Energy Spectra

Error envelopes shown reflect uncertainties due to cross-section modelling, beam modelling and calibration uncertainties

NATIONAL LABORATORY

Hadron Production Tuning

- \checkmark Parametrize Fluka2005 as a function of v parent x_F and p_T
- Horn focusing, beam misalignments included as nuisance parameters in fits
- Small changes in x-section, neutrino energy scale, NC background also allowed

Selecting Far Detector Beam Events

- ✓ LE-10 data sample
 - →Total POT: 1.27x10²⁰
 - → FD live time: 98.9%
- Beam spill trigger reads out all activity in 100μs around spill signal (10μs)
- event rate constant over time
- event time consistent with spill
- ✓ additional 53° cut around beam axis to reject cosmics
- cosmic background estimated using sidebands outside timing cut and fake spills in anticoincidence with beam spills: upper limit < 0.5 events</p>

Far Detector Oscillation Analysis

Predicting unoscillated FD Spectrum

✓ Near and far detector see different decay angles of the neutrinos ⇒ different energy spectra

- Several methods developed for extrapolation
- Primary method is 'matrix method':
 - →contains info of pion 2-body decay kinematics and beamline geometry
 - →MC used to correct energy resolution and acceptance
 - → See talk N. Saoulidou

Observed vs. Expected Event Rate

Data sample (v_{μ} only)	observed	expected	ratio
E _v < 30 GeV	215	336.0±14.4	0.64±0.05
E _v < 10 GeV	122	238.7±10.7	0.51±0.05
$E_{v} < 5 \text{ GeV}$	76	168±8.8	0.45±0.06

- A large energy dependent deficit
- ✓ Below 10 GeV a 49% deficit is observed
- ✓ Significance is 6.2 (stat+syst)

FD Spectrum / Oscillations Fit

✓ Best-fit spectrum for 1.27x10²⁰ POT

$$|\Delta m_{32}^2| = 2.74^{+0.44}_{-0.26} \times 10^{-3} \text{ eV}^2$$

 $\sin^2 2\theta_{23} = 1.00_{-0.13}$
Normalization = 0.98

Errors are at 68% C.L. statistical + systematic

Allowed Region

- Fit includes penalty terms for three main systematic uncertainties
- ightharpoonup Fit is constrained to physical region: sin²(2θ₂₃)≤1

$$|\Delta m_{32}^2| = 2.74^{+0.44}_{-0.26} \times 10^{-3} \text{ eV}^2$$

 $\sin^2 2\theta_{23} = 1.00_{-0.13}$

Systematic Uncertainties

uncertainty	Δm_{32}^{2} (10 ⁻³ eV ²)	sin²2θ ₂₃
near/far normalization ±4%	0.050	0.005
abs. hadr. shower energy scale ±5%	0.060	0.048
NC contamination ±50%	0.090	0.050
all other uncertainties	0.040	0.011
total systematic uncertainty	0.13	0.07
statistical uncertainty	0.36	0.12

- ✓ Systematic shifts computed using MC "fake data" samples for $\Delta m^2 = 2.7 \times 10^{-3} \text{ eV}^2$ and $\sin^2 2\theta = 1.0$
- ✓ ∆m² systematic is ~40% of statistical uncertainty
- Several systematic uncertainties are data driven
 - → improve with more data and study

Far Detector Distributions

- Predicted no oscillations (solid)
- ✓ Best fit (dashed)

Future Prospects

2nd year of NuMI Running

NuMI Beam Performance, January 2005 - Oct 23 2006

Projected Sensitivities

- $ightharpoonup MINOS v_u$ disappearance sensitivities for different POT
- ✔ Best fit values used as input

$$\Delta m_{32}^2 = 2.74 \times 10^{-3} \text{ eV}^2$$

 $\sin^2 2\theta_{23} = 1.00$

Contours are 90%C.L. statistical errors only

Mark Dierckxsens

Conclusions

- ν MINOS has completed a ν disappearance analysis of the first year of NuMI beam data
 - → Exposure used in analysis: 1.27x10²⁰ POT
 - \rightarrow No disappearance excluded at 6.2 σ from event rates only
 - → Results consistent with oscillation hypothesis:

$$|\Delta m_{32}^2| = 2.74^{+0.44}_{-0.26} \times 10^{-3} \text{ eV}^2$$

 $\sin^2 2\theta_{23} = 1.00_{-0.13}$

- → Constraining $\sin^2 2\theta_{23} = 1$ yields: $\left| \Delta m_{32}^2 \right| = 2.74 \pm 0.28 \times 10^{-3} \text{ eV}^2$
- Systematic uncertainties under control
 - → significant improvements expected with data driven studies & more statistics
- ✓ Accepted for publication in PRL (hep-ex 0607088)
- Second year of running underway. Stay tuned for new results

Extras

NuMI Facility

NuMI Design Parameters:

- 120 GeV protons from the Main Injector (MI)
- Single turn extraction $\sim 10 \mu s$ spill
- MI accepts up to 6 batches from Booster
 - Either 5 or 6 for NuMI
- 1.9 second cycle time
- 4x10¹³ protons/spill
- 0.4MW

Performance Averages:

(for period: Oct 15 – Jan 31)

- 2.2 second cycle time
- 2.3x10¹³ protons/spill
- 0.17MW

Performance Records:

- 2.0 second cycle time
- 3.0x10¹³ protons/spill
- 0.29MW

Beam Composition

Composition of Charged-Current (CC) Events:

- × 92.9% ν_μ
- × 5.8% $\overline{\nu}_{\mu}$
- \times 1.2% v_e
- × $0.1\% \, \nabla_{e}$

33

Near Detector Spill

- Multiple events in ND per spill
 - Ver 1x10⁷ fiducial events collected
- Events separated using topology and timing
 - Color in display indicates time (blue: early, red: late)
- No rate effects observed
 - x Linear increase in event rate with beam intensity

NATIONAL LABORATORY

v, CC Event Selection

ND ν_{μ} CC Efficiencies/Purities

